Towards Policy Driven Self-Configuration of User-Centric
Communication

Paola Boettner
Dept. of Computer Science
Wellesley College
Wellesley, MA 02481
pboettne@wellesley.edu

ABSTRACT

The convergence of various multimedia communications that
includes voice, video and data presents many opportunities
for enabling unified communication but paradoxically leads
to inefficiencies for the user as the communication may be-
come complex. Model driven technologies such as the Com-
munication Virtual Machine (CVM) propose to reduce such
complexity through the use of models to define a user’s com-
munication needs. The CVM was extended to utilize mul-
tiple common-off-the-self(COTS) communication APIs such
as Skype and Smack which we refer to as communication
frameworks, to promote service and network independence.
However, the user’s current priorities and context play no
role in the use and configuration of these frameworks.

In this paper we introduce the notion of policy driven self-
configuration into the CVM, where high level user policies
play a major role in the self-configuration decisions. We
show the results of a feature analysis of the domain which
guided the policy definition process. We also provide a de-
sign of the policy driven self-configuring architecture.

Keywords

Autonomic Computing, Self-Configuration, Communication

1. INTRODUCTION

Unified communication, an amalgamation that includes
video, voice and data, provides opportunities for customized
communication. This unified communication can paradoxi-
cally lead to inefficiencies [12] for the user as the communi-
cation may become more complex. Additional complexity is
introduced when the users have to manage each new method
of communication between parties. Work has begun to ad-
dress this complex issue with user-centric [12] technologies
such as the Communication Virtual Machine (CVM). CVM
is a model driven development (MDD) paradigm for the re-
alization of communication intensive application models de-
fined using a Communication Modeling Language (CML).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACMSE ’09 March 19-21, 2009, Clemson, SC, USA.

Copyright 2009 ACM 1-58113-000-0/00/0004 ...$5.00.

Mansi Gupta
Dept. of Computer Science
Bryn Mawr College
Bryn Mawr, PA 19010
mgupta@brynmawr.edu

Yali Wu and Andrew A. Allen
School of Computing and Info. Sciences
Florida International University
Miami, FL 33199, USA
{aalle004,ywu001}@cis.fiu.edu

To further reduce the complexity of developing and us-
ing communication intensive application, Allen et al. [1]
proposed an architecture for the self configuration of mul-
tiple communication frameworks to provide low-level net-
working support for the Network Communication Broker
(NCB), the layer of CVM that provides a network inde-
pendent API. Communication frameworks, such as Skype
[15] and GoogleTalk [5], are commodity-off-the-shelf(COTS)
communication APIs that have been made publicly available
by their respective companies. They provide a framework
for the development of more sophisticated communication
services by third parties. Using this architecture, the CVM
would select the most appropriate framework to provide the
required communication service for the group of users in-
volved in the communication.

To enhance the user-centric behaviour of NCB, a user’s
current context and priorities should be included in the se-
lection of an appropriate communication framework. Self
configuration of communication frameworks in CVM should
therefore be directed by high-level user policies, which would
possibly express preferences, constraints and conditions for
their use. This policy driven self-configuration of the frame-
works and services would guide at runtime the realization of
communication models at the lowest level of CVM. It would
also support decision processes such as switching frameworks
in the event that a framework can not satisfy a new re-
quest from the user or a framework or its service becomes
unavailable. This would require the extension of the ar-
chitecture and its implementation to support policy driven
self-configuration. The major contributions of this paper are
the following:

1. A Feature analysis of available communication framew-
orks

2. Definition of the structure of user-centric communica-
tion (UCC) policy

3. Conceptual design of a policy driven user-centric com-
munication layer

In Section 2 we provide background on the main concepts
including the CVM technology. Our analysis of the UCC
domain is given in Section 3, while in Section 4 we discuss
our current work on policy driven self-configuration. Section
5 presents our prototype policy designer, related work in
Section 6 and we conclude in Section 7.

2. BACKGROUND

In this section we provide overviews of self-configuration
in Autonomic Computing and user-centric communication

as well as introduce the Communication Virtual Machine
(CVM).

2.1 Self-Configuration

Autonomic Computing (AC), which addresses the prob-
lems associated with the increasing complexity of comput-
ing systems as well as the evolving nature of software, is
the ability of computing systems to manage themselves and
adapt to changes in accordance with business policies and
objectives [7, 10]. The essence of autonomic computing sys-
tems is self-management and it is derived from a combina-
tion of four broad capabilities: self-configuring, self-healing,
self-optimizing, and self-protecting.

Self-Configuration refers to the ability of a system to ob-
tain its configuration parameters and initialize itself in or-
der to provide the expected services. Self-Configuration
techniques can be viewed as either Initial Configuration,
methods for specifying initial configuration requirements or
Dynamic Configuration, methods for specifying reconfigu-
ration based on given states [3]. For autonomic systems,
self-configuration encompasses the initial configuration of a
system as well as dynamic, reactive changes throughout its
operational life. Policies are often used to guide these con-
figuration transitions.

A policy is a set of considerations designed to guide de-
cisions on courses of action, as such policies are rules that
define the choices in the behavior of a system [13]. While
there is still debate surrounding the classification of poli-
cies, the existence of the goal and action policy types are
generally accepted. Goal policies specify a desired state or
criteria that characterize a set of desired states, where any
member of this set is equally acceptable[11]. An example
of such a set would be ”Use communication framework that
supports audio streaming and video streaming”. This set
would contain communication frameworks that support au-
dio and video streaming such as Skype [15], GoogleTalk [5]
and NCBNative. Any member of this set would satisfy the
stated goal. Action policies specify the action to be taken
when the system is currently in a given state [11]. An ex-
ample of this would be ”If system bandwidth is below 40
percent, replace video steaming with remote user’s avatar”.
The system state of bandwidth less than 40 percent should
cause the removal of video streaming.

2.2 User-Centric Communication

The convergence of various multimedia communications
that includes voice, video and data presents many opportu-
nities for enabling unified communication. There are how-
ever challenges presented by this model of communication as
the user may be less effective if the interaction with the com-
munication becomes unnatural. Interaction can be viewed
as any mutual, reciprocal exchange between people, tech-
nologies and processes [12]. Interaction becomes unnatural
as the context and priority of the communication will change
according to the specific domain(healthcare, disaster man-
agement). Additionally each new communication channel
and application increases the complexity as it introduces a
new way of contacting others. Complexity can hinder rather
than enhance communication [12] with the user having the
responsibility for managing their communication and adapt-
ing them as needed. To be user-centric requires knowledge
of the actual ’context’ of a user. A context defines a cer-
tain relationship of a human being to a particular number

User / Application (initiator) ‘ ‘ User / Application (initiator) ‘

]]

CVM CVM

‘ User Communication Interface }‘ User _{ User Communication Interface

UCl) ~ Communication | (ucly

] !

‘ Synthesis Engine (SE) }‘, _Schema instance _| .‘ Synthesis Engine (SE) ‘

negotiation
User-Centric Comm. _ Communication | User-Centric Comm.
Middleware (UCM) Logic Middleware (UCM)

!

Network Communication Broker
(NCB)

_< Network Communication Broker

] !

Communication Networks }4—»‘ Communication Networks ‘

Figure 1: Layered architecture of the CVM.

of objects of its communication space at a fixed moment
of time [16]. The user-centric communication approach is
about matching the communication resources with the in-
dividual’s needs in the context of the specific domain and
adapting accordingly, reducing the complexity to the user.

2.3 Communication Virtual Machine

Deng et al. [4] developed the notion of the Communica-
tion Virtual Machine (CVM) which enables the realization
of models defined using a Communication Modeling Lan-
guage (CML). CVM has a layered architecture and lies be-
tween the communication network and the user (or applica-
tion). Figure 1 shows the layered architecture of the CVM.
The key components of the CVM are: User Communication
Interface (UCI) - which provides a modeling environment
for users to specify their communication requirements us-
ing CML ; Synthesis Engine (SE) - which contains a set
of algorithms responsible for (1) automatically synthesizing
the user schema instance to an executable communication
control script, and (2) negotiating the schema instances with
other participants in the communication; User-centric Com-
munication Middleware (UCM) - which executes the com-
munication control script and coordinates the delivery of
communication services to users; and Network Communica-
tion Broker (NCB) - which provides a network independent
API to the UCM that masks the heterogeneity and com-
plexities of the underlying network.

3. UCC DOMAIN ANALYSIS

To define policies for guiding user-centric communication,
a detailed domain analysis needs to be performed to extract
the essential ” characteristics” of the communication domain.
Feature Oriented Domain Analysis (FODA) [9] provides a
systematic approach to address this problem. As a method
for discovering and representing commonalities among re-
lated software systems, the primary focus of FODA is the
identification of prominent or distinctive features of software
systems in a domain [9]. It leads to the creation of a set of
products that define the domain in terms of its mandatory,
optional and alternative characteristics of related systems.
In this section we present our survey of existing communica-
tion frameworks, and use the result of the survey to define
the domain of user-centric communications via the FODA
methodology, the result of which is used as the basis for
designing user-centric communication policies.

NCB

Core Features Native

skype| JML | Gtatk| Android| Yahoo! | Windows Live E'“gg’"y

Messenger e

1 1 1

Chat (one-to-one; 1 1

Chat (Conference)

Audio (one-to-one;

Audio (Conference)

Chat (Conference)

1
1
1
1
1
1

File Transfer

1
1
1
0 |R(<=3)
1
[
1

~lalololo o |~ |~

1
1 1 1
1 1 1
0 0 1
[1 1
0 0 0
1 1 1
1 1 1

1 1
1 1
1 1
Video (one-to-one; 1 1
1 0
1 1
1 1

Contact List 1 1

1 1
JavaSoript | Javascript Java
API Java | Java |Java| C++| Java [C+ (HTTP) Java | C/C++| HTML

Features

Emoticon

Online Status

Avatar Images

Voicemail

PC to Phone

Phone to PC

Message Archive

Plug-Ins

Importing Contact List

IM forwarding to cell phone

Radio

olololofo|o|w|e|=lo|=]=
alalalalalolo === |~ |~
olololo|=|olo|=lo|=|-]|=
ololol=|=|=lo|=lo|=|~]~
ololo|=|=|=|olole|=|=]|e
alo|al=]=]=fo|=]|=|=|= |~
S R [1SN0 S Y N
[S N R R PN R PN O S R
alalalafa = lo|=|=|=|~]~

Importing Contact List

Figure 2: Survey of Communication Frameworks

3.1 Survey of Communication Frameworks

Successful FODA practices builds on understandings of
both the common aspects, as well as differences of related
systems in a targeted domain. This requires a detailed sur-
vey of existing systems to capture the commonalities and
variabilities as comprehensively as possible. In a previous
paper [1], we had surveyed three communication frameworks
with respect to each one’s supporting features. The small
coverage of surveyed systems hinders the usefulness of this
method. To extend our sample set to yield more meaning-
ful results, we have chosen a wider and more representative
set of communication frameworks that are currently pop-
ularly used in industry. Moreover, we incorporated more
distinguishing features of these frameworks, such as mes-
sage archiving and importing contact list. Figure 2 shows
the result of our extended survey.

In this table, a 1 indicates this feature is present while a
0 indicates an absence. Entries with a 1* show that the fea-
ture comes with costs, R shows the feature has restrictions.
Besides the basic features of communication services such as
contact list and chat, which all frameworks support, we in-
corporated additional features that are of potential interest
to the user. The additional features provide a rich set of fine
grained properties that complement basic features in various
aspects. Although they are not essential in delivering basic
communication services, they bring more variabilities of the
systems that could affect their potential usage. We present
the feature analysis on this surveyed group in section 3.2.

3.2 Analysis of Communication Framework

In this subsection, we present the application of FODA
method to the user-centric communication domain. We fo-
cus on domain modeling for the purpose of this study, which
is an important phase of FODA that defines the problems
within the domain addressed by software. The domain mod-
els describe elements of systems in a given domain from the
point of view of the ”problem space” [9]. An important
artifact of domain modeling is the feature model.

Features are the attributes of the system that directly af-
fects the end-users. The feature model of the framework
gives us a logical grouping of the features of systems in the
domain that are of interest. Figure 3 shows the feature di-
agram resulting from feature modeling. We focus on user
centric communication applications as our interested family
of systems. It includes several mandatory features graph-

User-Centric
Communication

Contact List

W WA~ -
numUsers

onlineStatus [0 /o /]
] ‘ PioncPG | | PCZPhone

- (0]
rorved] ragiveve) [anmesas | s]

Figure 3: Feature Diagram for Frameworks

ically denoted by solid circles above or beside the feature
name, as in contact list (top right feature in Figure 3),
and optional features denoted by empty circles, as in file
transfer(second left feature in Figure 3).

Alternative features are connected by an empty arc, show-
ing one and only one of the sub features must be present,
while a filled arch connecting features denote or-features,
meaning you can have one or several of such features. For in-
stance, user-centric communications could have chat, or au-
dio, or video, or any combination of them, but a PC2Phone
is either free or at a cost. Each top feature of user-centric
communications, which we call the main features, have their
own sub features, either optional or mandatory, representing
properties of the main features. The hierarchical structure
goes down until we do not have further properties to be cap-
tured. The feature diagram is extensible as we refine and
iterate the FODA process in the future.

Feature analysis helps us to capture the domain model in
terms of the various characteristics or considerations of the
domain, which will be used as the basis for designing policies
that will guide how such ”considerations” are satisfied by
means of self-configuration. We will explain details of user-
centric communication policies in the next subsection.

3.3 User-Centric Communication Policy

Section 3.2 shows a diverse set of features that character-
ize the user-centric communication domain, however there
exist users who have no interest in a fine grained configura-
tion of their communication. OQur work on the feature anal-
ysis of this domain suggests the potential for automation
that can reduce the complexity to the user. A user’s request
for communication services can be guided by a combina-
tion of goal and action policies, which we call User-Centric
Communication Policies. User-centric communication poli-
cies are policies that aid the simplification of communication
while enhancing the user experience.

In Figure 4 we show the inputs and output for a self con-
figuration request in the CVM. An initial configuration, a
user’s request for a new connection or a new service (step 1
in Figure 4), would be evaluated and a set of configuration
commands (step 2 in Figure 4) generated for the configura-
tion of the framework. A dynamic configuration (step 3 in
Figure 4), a user’s request to reconfigure an existing con-
nection or service, would be evaluated producing a set of
configuration commands (step 4 in Figure 4) to reconfigure
a framework or (as in this example) replace a framework.
To ensure that the required goals of the initial and dynamic
configuration were met, relevant states would be included in
the monitored set of states to provide feedback. A reactive
configuration (step 5 in Figure 4), monitored states of the

Initial Request Modification Requests
(initial configuration) (dynamic configuration)

7 ls°1

Request to be evaluated
against policies

Request to be evaluated

5 s Autonomic Manager
against policies utononicVansos

Configuration Configuration Configuration
Commands

Commands Commands

Reactive Request
(reactive configuration)

skype Framework | O (O (O | SmackFramework | O (O (| NCBNative Framework

Figure 4: Self-Configuration steps for Frameworks

framework that are out-of-band , would be evaluated and a
set of configuration commands (step 6 in Figure 4)generated
to reconfigure or replace a framework.

User-centric communication policies would have to be de-
veloped for the classes of configuration discussed previously.
We present the policy definition in section 4.1.

4. POLICY DRIVENSELF-CONFIGURATION

We present our work on policy definition for user-centric
communication and the application of such policies.
4.1 Communication Policy Definition

There are four common elements identified when studying
the various policy standards [8]:

Scope: what is or is not the subject of the policy
Condition: when a policy is to be applied

Business value: the relative priority of a policy, allows
a system to make economic trade-offs

e Decision: the observable behavior or desired outcome
of a policy

We extended these elements to the collaborative communi-
cation domain based on the results of our feature analysis
and the need to express the range of user-centric communi-
cation policies discussed in Section 3.3:

e Scope the subject of the policy, in our design it de-
fines the management operation to be performed on
the specified communication component. The XML
representation of the scope, as shown in Figure 5, con-
sist of: service - the applicable communication compo-
nent, and operation - the intended management action.

e (Condition represents the trigger for the consideration
of the policy represented as: medium - the carrier of
the intended information to be communicated, and op-
eration - the action to be performed on the proposed
medium.

e Business value prioritizes conflicting polices and is rep-
resented by: businessGroup - the associated grouping
for the specific policy, and value - a numeric value that
represents the policy’s priority in the group.

e Decision defines the policy’s desired outcome and ex-
pected behavior of the communication. This is rep-
resented as: mediumAttribute - the property of the
medium that is to be focused on, connectID - option-
ally specify a connection to be targeted, and either

<csmPolicy>

<scope>
<service>"Communication Object"</service>
<operation>"selection"</operation>
<active>"true"</active>

</scope>

<condition>
<medium>"video"</medium>
<operation>"request"</operation>

</condition>

<businessValue>
<businessGroup>"general"</businessGroup>
<value>96<</value>

</businessValue>

<decision>
<mediumAttribute>"numberOfUsers"</mediumAttribute>
<connectionlD>"connectionID"</connectionID>
<minVal>"connectionlID.users"</minVal>

</decision>

<fcsmPolicy>

Figure 5: Communication Service Policy.

maz Val and/or minVal - a set of parameters that state
the acceptable range for the specified attribute.

Figure 5 shows an example of a communication service
policy using XML.
Policy:

Scope: selection of Communication Object

Condition: request for video

Business value: general group with priority 96
Decision: select communication framework whose med-
wum supports at least the connection’s users count

4.2 Conceptual Design

Figure 6 shows the conceptual view of the evaluation pro-
cess. The domain specific nature of CVM assures us of a
much more narrow focus in terms of features and attributes.
With that in mind, our evaluation process uses a lightweight
policy decision mechanism at its core as detailed in [1]. The
policy authoring tool, an instance of which is our simplified
designer (see Section 5), creates policies that will guide the
management of the communication resources. These policies
are stored in the policy repository (left in Figure 6).

As shown in Figure 6, an incoming user’s request for ser-
vice is first handled by the request decomposition component.
A request is decomposed into the feature, sub-features and
attributes to be evaluated. This process also identifies the
target of the request which will aid in the lookup and se-
lection of the relevant policies. The policy evaluator takes
this decomposed set along with the returned set of relevant
policies and the current state of the targeted resource to pro-
duce a set of configuration commands as its decision. These
commands are passed to the touchpoint manager.

The touchpoint manager (right side in Figure 6) is respon-
sible for the low-level management of the communication re-
sources, these resources are the communication frameworks
as well as the specific services offered by the frameworks.
The touchpoint manager will also generate reactive requests,
request generated due to out-of-band states, which are eval-
uated in a similar manner as the user’s request.

4.3 Applying Communication Policies

As stated in section 2.3, CVM utilizes the model driven
approach for the creation and the realization of collabora-
tive communication. User-centric communication policies
provide a way to introduce user specific high level goals to

Policy
Authoring
(NCB API)

user's request J
API Call Queue Reactive Call [events / exceptions

(Low Priority) Queue
(High Priority)
reactive request
1
Request
Decomposition

Request
Evaluation

policies

Touchpoint Manager

current
state

decision

[| | . —_ — i —

| | | New |

NCBNative Skype Smack Android Communication
l J l Framework J

Figure 6: Conceptual Design for Policy Evaluator

guide this realization process. We now present a communi-
cation scenario that details how this is achieved.

Scenario: There is a collaborative conference call between
two members of a project group, Paola and Mansi. The two-
way conference utilizes the PC-to-PC audio feature. After
some discussion the group need to bring another person,
Yali, into the conference via PC-to-Phone. The user-centric
communication policies defined for the CVM are:

e P1:{S:con C:any D:cUsers<=fUsers }
e P2:{S:con C:PC2Ph D:useByDef NCBNative}

Where S:Scope, C:condition, D:decision. P1, a goal policy,
states that for any type of request (for example audio or
video) the frameworks considered should support the num-
ber of users in the connection. We effect this goal by creating
a set of candidate frameworks. P2, an action policy, states
that for a specific type of request (PC2Phone) the default
framework should be NCBNative. In this scenario, NCB-
Native is our most cost effective framework for fixed line
calls.

Realization of Communication: A communication model
is created for a two-way audio-video conference and goes
through a series of transformations that results in API calls
to the NCB. The interested reader can see [17, 14] for the
details of the model creation and transformation processes.
There are four supporting communication frameworks used
in the prototype which include: Skype, supporting five users
for audio; NCBNative, supporting unlimited users for audio;
JML, no audio support; and GoogleTalk, supporting two
users for audio. We assume that Mansi and Yali are all in
Paola’s contact list for each communication provider. NCB
receives this series of request for the realization of a two-way
communication as follows, with Paola as the initiator:

® createSession(conID)
® addParty(conID, "Mansi")

® sendMedia(conID, "audio")

The three user requests are queued and serviced in order by
the request decomposition component. The createSession
request is to create and map a session in this layer of the
CVM to the upper layer’s connection identifier conlD.

The addParty call provides connection and remote users
identification and is decomposed as such. Connection is
identified as the scope (targeted concern) and so policies P1

audio = video = other

o

g

D
Emoticons
Message Archive
Online Status

IM Forwarding

CO00O0O
CO0000¢

Regui
2}
o
Iz}
O
2}
O
2]
O
s}
O

Avatar Images

Generate Policy

Figure 7: Screenshot of Simplified Policy Designer

and P2 are retrieved from the policy repository by the re-
quest evaluation component, see Figure 6. Policy P2 specif-
ically targets connections which requested PC2Phone fea-
ture, however we have not yet added that feature to the
connection so this policy would not be relevant at this time.
Using policy PI the connection’s count of users is evaluated
against the possible candidate frameworks retrieved by the
request evaluation component from the touchpoint manager.
This results in a candidate set whose members all satisfy
policy P1.

The sendMedia call adds the audio feature to the connec-
tion and policy P1I is needed to guide the decisions for this
request. The candidate set is further reduced to those that
support the "audio” feature with at least two users, since
JML does not satisfy this requirement it is no longer in-
cluded in the set. From the resulting candidate set the first
member of the set, Skype, is chosen and the communication
realized using that communication framework.

When the communication model changes to a three-way
audio conference with the addition of the fixed line call, it re-
sults in another set of addParty and sendMedia calls being
generated. The sendMedia call is decomposed as the tar-
geted connection with features ”"audio” and ”PC2Phone”.
Policy P2 is evaluated resulting in a third analysis of the
candidate set. Since NCBNative is included in the candidate
set the decision is passed to the touchpoint manager to use
NCBNative as the communication framework. The touch-
point manager is responsible for safely switching the com-
munication framework from its current framework of Skype
to the new framework, NCBNative.

S. A SIMPLIFIED POLICY DESIGNER

Figure 7 shows the current implementation of the pol-
icy designer prototype. It allows users to define the various
characteristics of the communication that he wants to incor-
porate, in terms of ”optional”, "required” and ”do not care”
features. These features are the expected characteristics of
the system that the policy evaluator would enforce when
self-configuring the underlying communication framework.
Due to the hierarchical nature of features, the required sub-
features of a main feature also need to be specified. Note
that currently, the policy designer is only able to generate
goal policies that define the expected features of system be-
haviors. When action policies and other more complex types
of policies are put into consideration, the policy designer
could be extended correspondingly, while the architecture
for policy evaluation and self-configuration remains.

When the administrator is done with selection of the fea-

tures and the ” Generate Policy” button is pressed, the policy
designer generates policies in the form of XML documents
and store them in the local policy repository. At runtime,
these goal policies would be transformed to action policies
that will guide system behaviors via self-configuration.

6. RELATED WORK

Self-configuration based upon policies to eliminate labor-
intensive processes performed by experts has been in ex-
istence for decades. However, most of these configuration
tasks are limited to network level configuration manage-
ment. In Boutaba et al [2], they proposed SELFCON as
an architecture for self-configuration of networks, in which
configuration policies are defined for easing the management
of network elements and maintenance of relationships among
network components during network operation, as opposed
to our focus of user-centric communication, which deals with
associating and adapting available communication resources
with a user’s communication needs in the context of a spe-
cific domain.

In the realm of user-centric communication policies, some
initial work has been proposed. In Gorton [6], users could
set up their personal preferences and policies for controlling
their communication services. For instance, a personal pol-
icy could define key controls of service delivery including the
service access control, post-paid spending limits, device or
network access impact on services. Their work differs from
ours in two ways: (1) the scope of the policy: while their
policies allow control over the who, what, where, when and
how much of service delivery, our policies focuses more on
the configuration of communication resources to best sup-
port users’ services and (2) they lack a formal representation
of the policy, while our policy definition is based on a FODA
approach with an XML definition.

In [1], an initial idea for self-configuring user-centric com-
munication services was been presented. However, the poli-
cies are defined in an ad-hoc manner, with no systematic
process to help identify the essential characteristics of the
domain that policies are based on. We complement that
work by using the FODA approach to capture the various
characteristics of the domain that form the basis for policy
definition, and a simplified GUI policy authoring tool for
producing XML policies based on the definition.

7. CONCLUDING REMARKS

In this paper we have extended the self-configuration ca-
pabilities of the CVM by introducing user-centric policies
that guide its autonomic behaviour. These user-centric poli-
cies provide a way for users to state preferences and concerns
that influence service provisioning. We presented the results
of our survey of popular communication frameworks and the
feature analysis of the user-centric communication domain
which guided our policy definition. We also presented a
design of the NCB that highlights the policy driven self-
configuration and described a communication scenario that
uses the prototype of the NCB. Our future work involves ex-
tending user-centric policy definition to represent other au-
tonomic features such as self-healing and self-optimization.
Additionally we will be evaluating the efficacy of the design
with respect to performance and configuration effort.

Acknowledgments
This work was supported by NSF grants 11S-0552555 and

HRD-0317692. The authors would like to thank their men-
tor Dr. Peter J. Clarke and the members of the 2008 REU
program.

8. REFERENCES

[1] A. A. Allen, S. Leslie, Y. Wu, P. J. Clarke, and
R. Tirado. Self-Configuring User-Centric
Communication Services. In (ICONS 2008), pages
253-259. IEEE, April 2008.

[2] R. Boutaba, S. Omari, A. Pal, and S. Virk. Selfcon-an
architecture for selfconfiguration of networks. Journal
of Communications and Networks, 3:317-323, 2001.

[3] H. Chen, S. Hariri, and F. Rasul. An innovative
self-configuration approach for networked systems and
applications. In (CTS 2006), pages 537-544. IEEE,
2006.

[4] Y. Deng, S. M. Sadjadi, P. J. Clarke, C. Zhang,

V. Hristidis, R. Rangaswami, and N. Prabakar. A
communication virtual machine. In COMPSAC 06,
pages 521-531. IEEE Computer Society, 2006.

[5] Google. Googletalk, Sept. 2007.
http://www.google.com/talk/.

[6] D. Gorton. Transforming the customer experience
with user centric networking. 2008.

[7] IBM Autonomic Computing Architecture Team. An
architectural blueprint for autonomic computing.
Technical report, IBM, Hawthorne, NY, June 2006.

[8] D. Kaminsky. An introduction to policy for autonomic
computing. IBM Autonomic Computing, Mar. 2005.
http://www.ibm.com/developerworks/autonomic/library/
ac-policy.html (September2007).

[9] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-oriented domain analysis
(foda) feasibility study. Technical report, CMU
Software Engineering Institute, November 1990.

[10] J. Kephart and D. Chess. The vision of autonomic
computing. Computer, 36(1):41-52, Jan. 2003.

[11] J. O. Kephart and W. E. Walsh. An artificial
intelligence perspective on autonomic computing
policies. POLICY 2004, 0:3, 2004.

[12] P. Lasserre and D. Kan. User-centric interactions
beyond communications. Alcatel Telecommunications
Review, 2005. http://alcaesd-f.nl.francenet.fr/docs/
1/S0503-UCBB_interactions-EN.pdf (March 2007).

[13] M. J. Masullo and S. B. Calo. Policy management: An
architecture and approach. In IFEE First
International Workshop on Systems Management,
pages 13—26, April 1993.

[14] R. Rangaswami, S. Sadjadi, N. Prabakar, and
Y. Deng. Automatic generation of user-centric
multimedia communication services. In IPCCC 2007,
pages 324-331. IEEE, 2007.

[15] Skype Limited. Skype developer zone, Feb. 2007.
https://developer.skype.com/.

[16] S. A. Sven van der Meer, Stephan Steglich.
User-centric Communications. In ICT 2001, pages
425-444. Special Sessions, 2001.

[17] Y. Wang, P. J. Clarke, Y. Wu, A. A. Allen, and
Y. Deng. Realizing communication services using
model-driven development. In (SEA 07), 2007.

