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Abstract—
Rapid advances in electronic communication devices and

technologies have resulted in a shift in the way communication
applications are being developed. The emerging development
strategies provide end-users with a greater ability to manipu-
late the underlying communication technologies by providing
the appropriate level of abstraction, referred to as user-
centric communication. In communication-intensive domains
such as telemedicine and disaster management, the user-centric
communication strategies still lack the ability to coordinate the
various communication services in collaborative processes.

In this paper, we present a domain-specific modeling lan-
guage (DSML), Workflow Communication Modeling Language
(WF-CML), that supports the rapid realization of collabora-
tive user-centric communication applications. WF-CML is an
extension of CML with communication specific abstractions of
workflow concepts. To realize WF-CML models the dynamic
synthesis process in the Communication Virtual Machine (CVM)
prototype was extended to coordinate the negotiation and
media transfer processes based on events generated during the
collaboration. We also present a comparative study to show the
advantage of using WF-CML over a general-purpose workflow
language and execution environment.

Keywords-Model-Driven Development, Domain-Specific
Modeling, Communication, Workflow Models,

I. INTRODUCTION

Rapid advances in electronic communication devices and

technologies, such as iPhone and Android, have resulted in

a shift in the way communication applications are being de-

veloped. These new development strategies provide abstract

views of the underlying communication technologies that

allow end-users to become more involved in the development

of the so-called user-centric communication applications.

In communication-intensive domains such as telemedicine

and disaster management, there is an increasing need for

domain-specific communication applications that are user-

centric and that support dynamic coordination of the various

collaborating communication services[1], [2]. One scenario

that typifies the need for this coordination is the patient dis-

charge process, where the discharging physician may need to

communicate with several other physicians, and to exchange

various parts of the patient’s electronic discharge package

depending on specific healthcare information exchange rules.

Existing approaches for realizing such applications usu-

ally involve the construction of customized communication

solutions for specific domains. However, building such ap-

plications from scratch is a non-trivial task. They often rely

on open communication APIs or frameworks for service

enabling functionalities [3], [4], or a call modeling lan-

guage such as CPL [5] for specifying coordinated telephony

services. The popularity of Next Generation Networks has

resulted in various user-centric service creation and deliv-

ery facilities [6], [7]. While these approaches enable non-

technically skilled users to create, manage and share their

own convergent services, many of them lack the ability

to coordinate individual communication services using the

appropriate level of abstraction.

In this paper, we present a domain-specific modeling

language (DSML), Workflow Communication Modeling Lan-
guage (WF-CML), that supports the rapid realization of

collaborative user-centric communication applications. We

use the term user-centric communication to refer to com-

munication applications that are driven by end-users and

mask device and network complexity while preserving the

diversity and power of advanced communication tools. WF-

CML is an extension of the previously developed Com-
munication Modeling Language (CML) [8], [9] with addi-

tional constructs for dynamic coordination of user-centric

communication services (UCCSs) in a collaborative envi-

ronment. Models created using WF-CML are interpreted

using an extended implementation of the Communication

Virtual Machine (CVM) [10], a run-time environment to

dynamically synthesize and execute UCCSs. The CVM is

extended to coordinate the negotiation and media transfer

processes based on events generated during the collaboration

of UCCSs. The contributions of this paper include:

• A metamodel defining the workflow communication

modeling language (WF-CML).

• WF-CML semantics that enable the realization of co-

ordinated UCCSs.

• A CVM prototype that supports the modeling and

realization of coordinated UCCSs

• A comparative study between WF-CML and another

workflow language to validate the claimed benefits.



We provide background on CML and CVM in Section II,

and define the WF-CML in Section III. We describe how the

CVM synthesizes WF-CML models to produce coordinated

communication services in Section IV. Section V introduces

the CVM prototype. Section VI presents a comparative study

between WF-CML with another workflow language. Section

VII describes related work and we conclude in Section VIII.

II. PRELIMINARY WORK AND MOTIVATION

In this section we give an overview of CML and CVM. A

healthcare scenario is used to illustrate CML concepts and

motivate the need for modeling the coordination of UCCSs

in a collaborative environment.

A. Modeling and Realizing UCCSs

Communication Modeling Language (CML): CML was

developed to raise the level of abstraction end-users model

and realize communication services at runtime [11]. It is

limited to modeling communication services between mul-

tiple participants and is designed to be simple and intuitive,

yet expressive enough to model a majority of UCCSs.

There are currently two equivalent variants of CML: the

XML-based (X-CML) and the graphical-based (G-CML). G-

CML provides the expert user with a graphical way to define

communication services for a specific domain, while X-

CML is an internal presentation CVM manipulates. CML is

used to describe communication schemas or communication
instances, similar to the relationship between use cases and

scenarios. To realize a communication service, two types of

communication models are required: a control schema (or
instance) that defines the configuration of the connections

in a communication, and a data schema (or instance) that

defines the media being transferred across a connection.

Communication Virtual Machine (CVM): CVM [10] pro-

vides a runtime environment that supports the modeling and

realization of UCCSs specified in CML. Figure 1 shows

the layered architecture of CVM. The CVM platform is

divided into four major levels of abstraction, each layer

playing a role in realizing communication services (see

dashed horizontal lines in Figure 1). The layers of CVM

are: (1) User Communication Interface (UCI) - provides a

language environment for users to specify their communica-

tion requirements using CML; (2) Synthesis Engine (SE)

- synthesizes CML models i.e., generates an executable

script (communication control script) from a CML model

and negotiates the model with other participants in the

communication; (3) User-centric Communication Middle-
ware (UCM) - executes the communication control script

to manage and coordinate the delivery of communication

services to users; (4) Network Communication Broker (NCB)

- provides a network-independent API to UCM and works

with the underlying network protocols or communication

frameworks to deliver the communication services.
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Figure 1. Layered architecture of the Communication Virtual Machine.

B. Motivating Scenario

We motivate the need for the class of user-centric com-

munication applications that involved coordinated UCCSs

using a real-world scenario provided by Dr. Burke, Director

of Cardiovascular Surgery at Miami Children’s Hospital

(MCH). The scenario describes several communication ses-

sions that take place when a patient is discharged. The actors

in the scenario include: A discharge physician (DP), a senior

clinician (SC), a primary care physician (PCP), a Nurse

Practitioner (NP) and the Attending Physician (AP).

Motivating Example: On the day of discharge, Dr. Burke

(DP) establishes an audio communication with Dr. Monteiro

(SC) to discuss the discharge of baby Jane. During the

conversation, Dr. Burke sends Jane’s discharge package to

Dr. Monteiro for validation. The discharge package consists

of a summary of the patient’s condition (text file); x-Ray of

the patient’s heart (non-stream file); and an echocardiogram

(echo) of the patient’s heart (video clip). After the package

is sent, Dr. Burke contacts Dr. Sanchez (PCP) to join the

conversation with Dr. Monteiro to discuss the patient’s

condition. During the conversation, Dr. Monteiro validates

Jane’s discharge package and sends it back to Dr. Burke. If

the package is received within 24 hours and is validated, Dr.

Burke then sends it to Nurse Smith (NP) and Dr. Wang (AP).

Otherwise, Dr. Burke has to send out an interim discharge

note (text file) to the AP. Meanwhile, Dr. Burke continues

his conference with Drs. Monteiro and Sanchez. �

The scenario contains the communication between DP,

SC and PCP, and the communication between DP and AP

and NP. To achieve a more efficient collaborative process,

the two communication instances need to be coordinated

during the execution of the scenario. We show a G-CML

control instance (CI) and data instances (DIs) in Figure
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Figure 2. G-CML representation for: (a) the control instance for the 2-way call between Dr. Burke and Dr. Monteiro, (b) data instance to enable
LiveAudio, (c) data instance to send the form DisPkg 1.

2(a) and 2(b) for the first communication instance. The

existing CVM technology captures the communication needs

of this scenario in separate CML instances[9], but automatic

coordination of individual communication instances, often

necessary in a collaborative process, is not supported. The

lack of support for dynamic coordination of communication

services motivates us to introduce communication-specific

abstractions of workflow concepts into CML.

III. A DSML FOR COORDINATED UCCSS

In this section we introduce WF-CML, a DSML for spec-

ifying the dynamic coordination of communication services.

We briefly describe the language criteria and the meta-model

of the DSML, and use the DSML to model the requirements

for the healthcare scenario presented in Section II-B.

A. Language Criteria

The following criteria guided the development of WF-

CML: The language should (1) be simple, yet expressive

enough, to model the coordination of UCCSs by domain

experts, (2) supports realization - dynamic synthesis and

automatic execution of models, and (3) supports dynamic

adaptation of executing models at runtime.

We reviewed several existing languages for modeling

process coordination including UML activity diagrams [12],

BPMN [13], BPEL [14] and YAWL [15]. Although these

general-purpose languages could conceivably be used in

place of WF-CML, the effort required to use them could be

significantly greater than a DSML that provides the needed

abstractions as first-class elements of the language [16].

Also, these languages produce complete workflow solutions,

such as assigning activity ownerships and specifying the

interaction between workflow engines and external appli-

cations, that are not always necessary [17]. For instance,

we could integrate an existing workflow language with the

CML. This allows us to use the workflow execution and

analysis tools that come with the language. However, such

a choice would certainly be desirable if we are looking

for heavyweight support for workflows in CVM, which is

currently not the case.

Note that since WF-CML targets at user-centric communi-

cation, it leaves out non-communication functionalities such

as data acquisition and processing, data storage. ”Commu-

nication” as used in this paper denotes the exchange of elec-

tronic media of any format (e.g., file, video, voice) between

a set of participants over a network (typically IP). This also

results in a lightweight and agile workflow support in CVM

through extending CML with necessary constructs rather

than integrate a full-blown workflow modeling language.

Furthermore, CVM targets at “domain experts”, persons

within a communication-intensive application domain (e.g.,

healthcare) that have some IT knowledge, but are not soft-

ware engineers or programmers. The “domain-specificity”

of our approach results in reduced development effort for

creating coordinated communication services.

B. Meta-Model for WF-CML

We defined the metamodel of WF-CML using an abstract

syntax, shown in Figure 3, and partial static semantics found

on the project’s website1. In short, a WF-CML model is a

graph (CommWorkFlow) consisting of nodes (WF-Node),

edges (WF-Edge), and trigger events (TriggerEvent) as

shown in Figure 3.

InitialNode and FinalNode signify the beginning

and ending of a model representing the coordination of

communication processes. CommProcNode (communica-

tion process node) is either an atomic communication model

(AtomicCommProcNode) or a nested workflow model

(CompositeCommProcNode) and has zero or one trigger

events associated with the node. The atomic communication

1http://www.cis.fiu.edu/cml/
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Figure 3. Abstract syntax for the WF-CML represented as a class diagram.

model has a CML model (cml::Comm Schema) and

represents a communication service between participants, an

example of which is shown in Figure 2. The meta-model for

CML is also available on the project’s website. We will use

the term CS process to refer to an atomic communication

process, and communication process to refer to either a com-

posite communication process or an atomic communication

process from this point on in the paper. DecisionNode,
ForkNode, JoinNode and MergeNode express control

flow between communication processes. There are two types

of edges (decision and regular). A decision edge is annotated

with zero or more atomic events. If there is no event

annotation on the decision edge it is considered an else edge.

TriggerEvent is composed of one or more communi-

cation process events (CommProcEvent). AtomicEvent
may be either a NegotiationEvent e.g., “negotia-

tion success”; ExceptionEvent e.g., “connection in-

terrupted”; MediaEvent e.g., “file A received”; or a

FormEvent e.g., “form DisPkg 1 received”. Each atomic

event may have a temporal property associated with the

event e.g., “DisPkg 1 not received 24 hrs after being

sent”. To support the definition of trigger events we

defined several temporal operators (TemporalOp), ne-

gotiation states (NegotiationState), media transfer

states (MediaTransferState), and form transfer states

(FormTransferState).

C. Modeling the Healthcare Use Case

We can use WF-CML to model communication-intensive

use cases that coordinate individual communication services.

As an example, we show the WF-CML model representing

the healthcare scenario in Section II-B in Figure 4. The

model includes three communication process nodes, each

one containing a CML model and a trigger event. The

CML model in CommProc 1 specifies the communication

between the DP and the SC, which is instantiated when

the WF-CML model is executed by Dr. Burke and he

loads the contact information of the SC. A form type

Discharge Pack and a built-in media type LiveAudio
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Figure 4. WF-CML model for healthcare use case.

is allowed for this communication. Note that the media

type and form type are instantiated when Dr. Burke enables

the audio stream, Figure 2(b), and loads the patient form

DisPkg 1, Figure 2(c), respectively. The trigger event in

CommProc 1 states that this node is exited when a vali-

dated patient form of type Discharge Pack is received

(DisPkg 1); or the patient form is not received 24 hours

after being sent.

IV. REALIZATION OF WF-CML MODELS

In this section we describe the semantic rules to support

realization of CML and WF-CML models, and dynamic

updates to the models at runtime. We use the term realization
to refer to dynamic synthesis of the model into an executable

communication control script, and automatic execution of

the model through deploying the control script at runtime.

A. Overview of Realization

The semantic rules of WF-CML extend the semantic rules

for CML [8]. We first provide an overview of the high-level

semantic rules for realizing CML models followed by the

high-level semantics rules for WF-CML models.

Realization of CML Models: The semantics to realize

a CML model representing a communication service is

captured as mappings from input CML models to output

scripts and events, as well as changes in the environment. It

is shown in the following transition rule.

((CIin, DIin), CSP Envi) =⇒ ((CIout, DIout), Scriptout,

Eventout, CSP Envi+1)

where:

• (CIin, DIin) - input control and data instances capturing

user’s communication needs to be realized by the

communication service.

• CSP Envi - state of the CS process including the state

of the executing control and data instances, (CIi, DIi),

negotiation state, Negi, and media transfer state, MTi.

• (CIout, DIout) - updated control and data instances

generated during the transition.

• Scriptout - communication control script generated,

including scripts for both (re)negotiation and media

transfer.

• Eventout - output event generated during the execution

of the CS process, including media events or negotia-

tion events.

• CSP Envi+1 - updated environment of the CS process.

The structure is similar to CSP Envi stated above.

The behavior associated with a CS process is specified

as a sequence of instance pairs of the form (CIi, DIi),

where i = 0, 1 · · · n. The initial instance pair (CI0, DI0)

represents the initial state of the system with respect to some

new connection to be established. CIi specifies the intent

of the end-user’s communication needs using a declarative

approach, whereas DIi represents the actual data to be

exchanged. Details of the labeled transition systems for

(re)negotiation and media transfer, and the abstract syntax

of the control script are explained by Wang [8].

Realization of WF-CML Models: The control flow for

coordinating communication services is specified using an

event-driven approach. The following execution rules are

defined for each executing WF-CML model.

(Eventin, WF Envi) =⇒ ((CIout, DIout), WF Envi+1)

where:

• Eventin - an input event that may trigger the execution

of the next node in the WF-CML model. These events

include negotiation events, data transfer events and

exception events.

• WF Envi - the current configuration of a process ex-

ecuting the WF-CML model (WF Proc). Its state is

defined as (WFexec, CS Procs, Curr CS), where:

– WFexec - the currently executing WF-CML model in

the WF Proc process.

– CS Procs - a list of executing CS processes in the

executing WF Proc process.

– Curr CS - currently active CS processes with respect

to the WF Proc process.

• WF Envi+1 - the updated configuration of the WF Proc

process.



B. Algorithms for Realizing WF-CML Models

To support the semantics rules described in the previous

section we now describe the main data structure and algo-

rithms used in the realization of WF-CML models.

WF-CML Hypergraph: We decided to use the hypergraph

[18] since it provides for the removal of nodes (Decision,

Merge, Fork and Join) that do not map to any real processes

but are used mainly for modeling the routing rules. These

control nodes can be replaced with “transitions”, annotated

edges, directly connecting communication process nodes.

We defined WF-CML hypergraphs as follows:

WF-CML HyperGraph = {HyperNodes,
HyperEdges, HyperEdgeAnn}

where:

HyperNodes = {InitialNode} ∪ {FinalNode} ∪
CS ProcNodes ∪ WaitNodes,

CS ProcNodes - a set of atomic communication pro-

cess nodes.

WaitNodes - a set of wait nodes for handling synchro-

nization for a join.

HyperEdges ⊆ HyperNodes × HyperNodes
HyperEdgeAnn: HyperEdges→EdgeAnn

EdgeAnn - events required to enable a transition.

The algorithm for converting WF-CML models into WF-

CML hypergraphs is similar to the transformation of UML

Activity Diagrams to Activity Hypergraphs designed by

Eshuis et al. in [18]. The main steps are: (1) flattening the

hierarchy by elimination of nested WF-CML models, (2)

replace the join node with wait nodes, (3) combine edges of

control nodes to create hyperedges, including concatenation

of edge annotations.

Realization: The top level algorithm realize WF, shown

in Figure 5(a), is the entry point for any input WF-CML

model. It invokes the algorithm analyze WF, line 2, to

dynamically analyzing WF-CML models. The algorithm for

analyze WF is shown in Figure 5(b). Based on the result of

the analysis, realize WF either instantiates a new process,

wf proc, to handle the realization of a new WF-CML model,

lines 3-6; delegates the realization of a new or existing CS

process to the controller for the communication schema [8],

lines 7-8; handles dynamic updates to the WF-CML model,

lines 9-11; or terminates the currently executing WF-CML

model, lines 13-16. Instantiating a new WF-CML model

requires the execution of the WF-CML hypergraph, line 6,

returned from analyze WF.

Algorithm analyze WF performs a runtime analysis of

the incoming WF-CML model and returns a workflow

change object (wfc). The wfc object contains three fields:

diff containing the change type, WF-HPG the WF-CML

hypergraph, and a CML schema pair (CI, DI). If the input

WFin contains a new WF-CML model, lines 2-4, then a

WF-CML hypergraph is built and returned as a part of wfc.

If WFin contains a trivial WF-CML model (a model with

one CS process) then either it signals the termination of the

workflow, lines 6-7, or an update to a CS process, lines 8-

10. The update to the CS process results in the CML model

being extracted from WFin and returned as part of wfc, line

10. If WFin is an update to an existing WF-CML model,

lines 12-15, a new hypergraph is created a returned in wfc.

Execution of WF-CML Hypergraphs: The execution of

a WF-CML hypergraph involves traversal of the hypergraph

supported by the underlying event mechanism. The approach

we use is similar to that described by Eshuis et al. [18]

except for the following differences: (1) the restrictions we

place on the trigger events in the CS processes and the

guards annotating the hyperedges, and (2) the ability for a

CS process to continue execution after a hypernode is exited.

We omit the details of the hypergrpah traversal and focus

on the differences previously stated.

Event mechanism: In Section III-B, we classify atomic

events into data transfer events, negotiation events, exception

events, and so on. These events could either be generated

externally, or internally. Given that the current design of WF-

CML allows for the concurrent execution of multiple WF-

CML processes, a central event manager is needed to receive

events, queue them and dispatch them to corresponding WF-

CML processes. The event manager is also responsible for

generating timeout events. We assume that the events a CS

process is waiting for will eventually arrive. In addition,

since the trigger event for a CS process is based on events

generated by the executing CS processes in the active

hypergraph node, events that belong to a future CS process

are ignored. Our design of WF-CML ensures that if the

trigger event of a CS process fires then there is at least

one edge that can be taken out of the node. This is more

restrictive than the semantics defined by Eshuis et al. [18]

for UML activity diagrams.

Handling Loops: When a WF-CML model contains a loop

that connects a CS process node to a previous CS process

that is still executing, there is an option of restarting a

new CS process, or reusing the currently executing CS

process. To make a decision, we first need to define the

notion of equivalence of CS processes. Recall that a CS

process consists of an executing communication instance

pair (CI, DI) and a trigger event. At this stage in the

development of WF-CML we define equivalence only on the

CI. We currently define “total equivalence” of CI based on

the attributes of, and number of, the Connections, Persons,

MediumTypes and FormTypes. We expect to relax this strict

definition of equivalence of CIs in the future.

V. CVM PROTOTYPE

We extended the CVM platform to handle WF-CML

models. The CVM still maintains the layered architecture



1: realize WF (ref WFin)
/*Input: WFin - WF-CML model */

2: wfc ← analyze WF(WFin, WFProcs)
3: if wfc.diff == “Initial” then
4: wf proc ← new WFProc(wfc.WF HPG)
5: WFProcs.add(wf proc)
6: wf proc.Exec HPG(wf hpg, WF Envi)
7: else if wfc.diff == “CS ProcUpdate” then
8: CS Controller.execute(wfc.cmlSchema)

/*Extract the new (CI, DI) and updates the executing comm.
instances. Communication control scripts are generated dur-
ing updates to the comm. instances */

9: else if wfc.diff == “WFUpdate” then
10: wf proc ← WFProcs.find(wfc)
11: wf proc.update(wfc, WF Envi)

/* Update the executing WF-CML model using wfc */
12: else if wfc.diff == “Terminate” then
13: wf proc ← WFProcs.find(wfc)
14: wf proc.terminate(WF Envi)
15: end if

1: analyze WF (ref WFin, ref WFProcs)
/*Input: WFin - WF-CML model
Output: wfc - WF-CML change object */

2: if !WFProcs.contains(WFin) then
3: wfc.diff ← “Initial”
4: wfc.WF HPG ← Map2HPG(WFin)

/* An initial WF-CML model */
5: else if WFin.isTrivial() then
6: if WFin.csProcNode.isEmpty() then
7: wfc.diff ← “Terminate”

/*Model has no workflow related nodes */
8: else
9: wfc.diff ← “CS ProcUpdate”

/* Update to a CS process */
10: wfc.cmlSchema ← WFin.csProcNode.commSchema
11: end if
12: else
13: wfc.diff ← “WFUpdate”
14: wfc.WF HPG ← Map2HPG(WFin)

/* Update to the flow in WF-CML model */
15: end if
16: return wfc

(a) (b)

Figure 5. Algorithms to (a) realize WF-CML, and (b) analyze WF-CML.

Figure 6. Modeling environment for coordinated UCCSs.

as defined in Section II-A. The major extensions were done

in the synthesis engine (SE) and some changes were applied

to the user communication interface (UCI). The two lower

layers of CVM, User-centric Communication Middleware

(UCM) and Network Communication Broker (NCB) were

left unchanged. Prior to developing WF-CML, the com-

munication modeling environment (CME) in the UCI was

developed using the Visual Studio DSL Tools [19]. Figure

6 shows a screen shot of the CME that the expert user uses

to create the WF-CML model for the healthcare use case in

Section III-C. Figure 7 shows the user-friendly GUI that Dr.

Burke uses to realize the WF-CML model.

SE was extended to handle the coordination of the com-

munication services. Figure 8 shows the high-level design

of the SE, including the flow of control when models are

processed. The synthesis algorithm shown in Figure 5(a) is

implemented in the WF-CML controller, shown on the left

Figure 7. Dr. Burke’s GUI showing (1) the message window requesting
confirmation to advance in the workflow, and (2) Baby Jane’s discharge
package received from Dr. Monteiro.

of Figure 8; similarly the analysis algorithm, Figure 5(b)

is implemented in the WF-CML analyzer. Each executing

WF-CML model has its thread of execution represented as

WFProcK shown below the WF-CML controller. Events are

received from (1) the SE dispatcher after the CI and DI are

analyzed and the appropriate transitions made in the state

machines for negotiation and media transfer, (2) internal

timers initiated based on temporal properties related to the

trigger events (not shown in the figure), and (3) from the

UCM (external events). The events are managed by the

WF-CML controller and dispatched to the WFProcKs during

execution. Each WFProcK is responsible for traversing and

maintaining its own WF-CML Hypergraph.

VI. COMPARATIVE STUDY

In this section, we present a comparative study be-

tween WF-CML and YAWL (Yet Another Workflow

Language)[15] to show the advantages of using a DSML

versus a general purpose modeling language. YAWL is a
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Figure 9. YAWL Process Editor for Creating YAWL Specification

concise and powerful workflow modeling language based

on petri-nets and workflow patterns. It is supported by a

business process management/workflow system that includes

an execution engine and a graphical editor.

We argue that by raising the level of abstraction, WF-

CML requires less development effort and expertise for mod-

eling and realizing coordinated user-centric communication

services. In addition, the restricted domain of WF-CML

results in a more lightweight execution engine (the CVM)

than a general purpose workflow engine. We chose YAWL

in our study given its mature theoretical background, tooling

support and easy access to its artifacts. We have started to

explore a more comprehensive set of metrics to compare

models developed using other DSMLs [17] e.g., BPEL [14]

and Microsoft Workflow Foundation[20].

A. Environment Setup and Results

We modeled the same patient discharge scenario using

both WF-CML (Figure 6) and YAWL(Figure 9) and executed

the models in their respective execution engines. YAWL

requires the exact sequence of atomic communication tasks

(calling the doctor followed by sending the discharge pack-

age, etc.) to be specified at design time. Also it requires

explicit data flows to be specified through the mapping of

input/output parameters to task variables. In WF-CML, basic

nodes of communication processes are modeled with declar-

ative CML models, which specify high level communication

needs as opposed to detailed steps of communication. The

experimental steps are as follows:

• Set up both CVM and YAWL engine on Skype as the

communication service provider for service realization

• Specify the same collaborative process using both WF-

CML and YAWL in their respective graphical editors

• Load and execute service specifications in both CVM

and YAWL engine

Table I shows the comparison of YAWL and WF-CML in

terms of setup prerequisites, development effort (including

the specification of the high level process flow and the

specification of the service for each task node), required

expertise as well as ease-of-change. Table II shows the

collected static metrics of the YAWL implementation and

CVM implementation, including number of lines of code,

number of classes and methods. Dynamic metrics for the

two implementations are also shown in Table II, including

the number of threads and the memory usage needed to start

up the CVM and YAWL engine, and the average execution

time for realizing certain workflow nodes.

B. Discussion

The results of the comparative study show that WF-CML

has several advantages over YAWL in terms of the develop-

ment effort, the ease of dealing with changing application

needs and potential execution performance metrics.

Development Effort: Table I showed that in using WF-CML,

modelers are shielded from service realization details of

task nodes. These include the development and deployment

of YAWL services, the definition of task and net vari-

ables, using parameter mapping to define data flow, and

the definition of predicate guards for conditional branching.

Using WF-CML the modeler is only required to specify

the communication services using CML model and define

trigger events. Therefore, WF-CML is more user-friendly

than YAWL for domain experts (e.g., healthcare information

specialist) who have limited expertise in programing.



Table I
COMPARISON BETWEEN WF-CML AND YAWL

Aspects of YAWL CVM
Comparison

Setup 1. Servlet Container (Apache Tomcat default) Skype4Java (Skype API for Java)
Prerequisites 2. Database back-end (PostgreSQL default)

3. Skype4Java (Skype API for Java)

Process flow Create process flow in YAWL editor Create process flow in WF-CML editor
Specification
Task/Service 1. Develop and deploy web services that invoke Skype API calls 1. Specify communication services nodes using CML
Specification 2. Register deployed web service with YAWL engine 2. Specify trigger events for advancing communication nodes

3. Bind communication tasks in the YAWL specification to registered
web services
4. Define task variables and net variables and mapping between
input/output parameters to these variables

Required 1. Developing/deploying customized web services in IDE Basic understanding of WF-CML
Expertise 2. Understanding of web service bindings using parameter mappings

3. Understanding of data flows and predicate specification

Efforts For 1. For changes in YAWL process, update model in YAWL editor 1. For changes in WF-CML process, update model in WF-CML editor
Changing
Needs

2. For changes in the service of activity nodes, repeat four steps
outlined above

2. For changes in comm. service nodes, update CML model dynami-
cally

Table II
METRICS FOR CVM AND YAWL ENGINE.

Static # Single Lines # of Classes # of Methods
Metrics of Code

CVM 11250 276 1522

YAWL 43072 485 6738
Engine

Dynamic Avg. Memory # Of Threads Avg. Time for Executing
Metrics Usage (Page File) WF Nodes(milliseconds)

CVM 184 87 Audio Call – 874.2
Form Transfer – 944.4

YAWL 374 161 Audio Call – 1950
Engine Form Transfer – 1869.6

Ease-of-Change: WF-CML is capable of responding to

changing user communication needs, as well as changes

in low level technology and implementation. Changes in

the application needs are addressed at two levels: for basic

communication services, users could dynamically update

the communication without being restricted by the flow of

control specified, as mentioned in Section VI-A. For changes

in the process specification, developers only need to update

the process model at design time without additional effort.

To make such a change in the YAWL model, the modeler

has to create the additional task, additional net variables and

define the corresponding predicate guards.

Generality/Efficiency Trade-off: Table II provides evidence

of the lightweight nature of the CVM platform over the

YAWL engine and its supporting systems e.g., Apache Tom-

cat and PostgreSQL. Since YAWL offers complete workflow

solutions and models various workflow perspective, it is

more heavyweight. Also, YAWL supports the interaction

between running workflow instances with external applica-

tions exposed as services, which further contributes to its

heavyweight nature. We trade generality for a lightweight

workflow approach, demonstrated by the decrease in static

complexity as well runtime overhead of the system.

VII. RELATED WORK

Modeling Communication: The idea of using domain-

specific languages to specify robust and adaptable com-

munication services has been around for sometime [5],

[21]). The Call Processing Language (CPL)[5] is a DSL

for programming Internet telephony services. It is used to

quickly and safely specify call processing services such as

call forwarding and anonymous call rejection. WF-CML

differs from these DSLs in that DSLs like CPL are driven

by abstractions over existing protocols or programming level

solutions, and hence they are used by engineers to develop

variations of a family of telephony services, whereas WF-

CML uses the vocabulary of domain experts without being

limited by technological considerations.

The emergence of Next Generation Networks has en-

abled user-centric service creation and delivery facilities,

including OPUCE (Open Platform for User-centric service

Creation and Execution) [6] and SPICE(Service Platform for

Innovative Communication Environment [7]. These environ-

ments support the combination of Internet IT services with

communication services such as presence and audio/video

conferencing. However, users are still required to choose or

select the “base” services that they want to reuse, and build

service mashups by composing two or more “base”services.

Web Services and Service Coordination in SOA: WF-CML

and the CVM framework share similarities with web ser-

vices and SOA. Both approaches provide integration and

coordination techniques to compose complex services from

basic ones. By focusing on user-centric communication,

using a DSL like WF-CML could achieve lightweight and

agile communication process support, as opposed to heavy

workflow support in regular workflow languages in SOA,

such as YAWL[15], BPMN [13] and BPEL [14]. While

these languages are designed to cover a broad spectrum

of business processes, they are usually heavyweight (see

comparative study). Also, these low-level languages are

intended for use by software developers, whereas WF-CML

targets domain experts and hence it is more user-friendly

while enabling automatic realization.

Execution Semantics for Workflow Models: There has been



a plethora of work on defining the semantics for executable

workflow models. Our work is most closely related to the

work by Eshuis et al. [18], as described in Section IV-B.

Eshuis et al. define the execution semantics for UML activity

diagrams [12] using activity hypergraphs and label transition

systems. We use some of the concepts describe by Eshuis et

al. to convert WF-CML models to WF-CML hypergraphs,

but adapted them accordingly to suit our semantic needs.

CML and CVM: In this paper we extended the work on

CML presented by Clarke et al. [11] and Deng et al. [10]

to include workflow constructs thereby allowing end-users

to model the logical dependencies or coordinations between

individual communication services, such as conference call

or sending files. We also extended the semantics defined by

Wang et al. [8] to handle dynamic synthesis of WF-CML

models that allows the coordination of UCCSs.

VIII. CONCLUSION

In this paper, we presented a Workflow Communication

Modeling Language (WF-CML), a DSML for modeling the

coordination of user-centric communication services in a

collaborative environment. A definition of the meta-model

for WF-CML is given and the semantics for dynamically

realizing WF-CML models are described. The Communi-

cation Virtual Machine (CVM) prototype was developed to

support the creation and execution of WF-CML models. We

also presented a comparative study between WF-CML and

YAWL. Future work involves the development of policies

e.g., security and optimization, that can be incorporated into

WF-CML, and a more comprehensive comparative study.
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