
REALIZING COMMUNICATION SERVICES USING MODEL-DRIVEN
DEVELOPMENT

Yingbo Wang, Peter J. Clarke, Yali Wu, Andrew A. Allen and Yi Deng
School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

email: {ywang002, clarkep, ywu001, aalle004, deng}@cis.fiu.edu

ABSTRACT
The advances in technology to support complex commu-
nication services, such as the pervasiveness of mobile de-
vices and the convergence of multimedia communication
over digital networks, has resulted in a need for a new ap-
proach to model and realize communication services. The
stovepipe approach used to develop today’s communica-
tion applications is no longer effective since it results in
a lengthy and costly development cycle. In this paper we
present an approach that allows a user (end-user or domain
expert) to model and realize communication services us-
ing a model-driven approach. We describe a semi-formal
communication logic which is the meta-model for creat-
ing instances of user communication services. To show the
applicability of our approach we demonstrate how models
are created and realized using our prototype and a scenario
from the healthcare domain.

KEY WORDS
Modeling-driven development, Communication services,
Meta-Model.

1. Introduction

The pervasiveness of communication technology facili-
tates the widespread use of communication-intensive ap-
plications. Improvements in network capacity and relia-
bility, as well as the wide use of communication devices
such as PDAs and cell phones provide developers with the
ability to create more complex communication-intensive
applications. These applications cover domains such as
telemedicine, disaster management, and scientific collab-
oration. The communication services used in these appli-
cations include various combinations of: IP telephony, in-
stant messaging, video conferencing, and other forms of
multimedia data transfers. However, traditional stovepipe
approaches to developing communication-intensive appli-
cations are cumbersome and costly with long development
cycles. Today, all trends indicate that the pace of inno-
vation of new communication-intensive and collaborative
applications is expected to accelerate even faster.

In this paper, we define a user-level communication
logic meta-model to support the model-driven develop-
ment of communication-intensive applications. This meta-

model defines the communication primitives, constraints
and association policies between these primitives. Using
the communication logic meta-model the communication
needs of different applications can be modeled during re-
quirements analysis and be realized in days rather than
weeks or months. The rapid realization of the model is
achieved by automatically transforming this model into an
executable script language that is then interpreted. The
modeling, transformation and realization of communica-
tion services are made possible by using the concepts out-
lined in the Communication Virtual Machine (CVM) [3].
Finally, we present a prototype which works on top of the
Skype platform [11] to illustrate the realization process.

The paper is organized as follows. Section 2 provides
background on model-driven development. Section 3 de-
fines the semi-formal model for communication logic. Sec-
tion 4 describes the architecture of the prototype used to
realize a communication model. Section 5 describes how
the prototype creates and realizes communication models.
Section 6 discusses the related work and we conclude in
Section ??.

2. Background

In this section we provide a generalized definitions of a
model, artifact and meta-data. An overview of model-
driven development is also presented.

2.1 Model Definition

In this paper we use the generalized definition of a model
as presented by Hailpern and Tarr [5]. A model M is de-
fined as an abstraction over some part of a software prod-
uct. M is semi-formally defined as a four tuple M = <
N,E, ΣM ,ΛM >, where N - is the set of model nodes, E
- the set of directed model edges from node to node, ΣM -
an alphabet of model labels, and ΛM - an annotation map-
ping function that maps either nodes or edges into labels
(ΛM : N ∪E → ΣM). Specialized models are denoted by
MK where K is an abbreviation representing the special-
ized model. For example, MUML denotes an UML model.

An artifact (AM) is a set of model elements of M that
have a particular meaning in a specific domain or with re-

591-105 473

nicholas

spect to a particular problem solution. An artifact is there-
fore a subgraph of some model M . A relationship R maps
artifacts in one model Mi to artifacts in another model Mj .
R is therefore < Ai, Aj ,ΣR,ΛR >, where Ai, Aj are the
artifacts in models Mi,Mj , respectively; ΣR are the labels
in R assigned by ΛR. Hailpern and Tarr [5] define meta-
data as the set of annotations at both the model level, ΛM ,
and relationship level, ΛR. We use this definition of meta-
data throughout the paper.

2.2 Model-Driven Development

Model-driven development (MDD) automates the transfor-
mation of models from one form to another [8]. The MDD
process usually requires that there be a source model or
a platform independent model(PIM), and a target model
or platform specific model (PSM) [12]. The initial source
model represents the concepts of a specific domain (MCS),
in our case user view of communication services, and the
final target model contains the source code that interacts
with the underlying communication infrastructure (MCI).

To ensure the consistency of models during transfor-
mation the technique of meta-modeling is used [10]. We
define the meta-models used to realize communication ser-
vices based on the meta-data extracted from the commu-
nication logic models. Atkinson and Kühne [1] state that
meta-modeling should consists of two orthogonal dimen-
sions that support two forms of instantiation: linguistic -
concerned with the language definition, and ontological -
concerned with domain definition. We use both in defin-
ing the meta-models used in our approach. The ontologi-
cal meta-modeling will be implemented using profiles and
stereotypes provided in UML 2 [9].

3. Modeling Communication

As stated in Section 2.2 one of the essential properties of
MDD is the automatic transformation between different
models. Meta-models are essential to the transformation
process and in this section we present an abstract model of
communication that forms the basis of a meta-model. The
meta-model also supports the notion of a user view, syn-
onymous to a use case, and the global view synonymous
to the application. We also use this meta-model to create a
UML profile that is used in developing the graphical mod-
eling environment.

3.1 Abstract Communication Model

We define a communication logic model (MCL) as a four
tuple consisting of a set of nodes (NCL), edges (ECL), an
alphabet of model labels (ΣCL) and an annotation map-
ping function (ΛCL). We use sans serif font to denote lit-
eral labels. The communication logic model is recursively
defined where the nodes are themselves models.

NCL ∈ {MP ,MC ,MI}
ECL ∈ {<MP ,MI >,<MI ,MC >}
ΣCL ∈ {attributesCL, transmission, isAttached}
ΛCL = {MP → attributesCL,

MC → attributesCL,
MI → attributesCL,
<MP ,MI > → isAttached,
<MI ,MC > → transmission}

• MP represents a Participant model. Each MP can
only send or receive data via an interface model. A
MP may be associated with one or more interface
models.

• MI represents an Interface model. An MI is associ-
ated with one and only one MP .

• MC represents a Channel model. A MC may be as-
sociated with one or more MI . A MI may also be
associated with one or more MC .

• attributesCL represents a set of attributes including a
unique identifier.

• transmission ∈ {send, receive, bi-directional,
disconnected}

A Participant model MP is defined as follows:

NP ∈ {Participant, MCL}
EP ∈ {}
ΣP ∈ {attributesP }
ΛP = {Participant → attributesP ,

MCL → attributesP }

• A Participant is a source or sink of data.
• attributesP represents a set of attributes for Partici-

pants.

An Interface model MI is defined as follows:

NI ∈ {Interface}
EI ∈ {}
ΣI ∈ {attributesI}
ΛI = {Interface → attributesI}
• An Interface represents either the actual device or a

virtual device used by the participant to pass data to
the channel.

• attributesI represents a set of attributes for Inter-
faces.

A Channel model MC is defined as follows:

NC ∈ {Channel,MD}
EC ∈ {<Channel,MD >}
ΣI ∈ {attributesC , allows}
ΛI = {Channel → attributesC ,

MD → attributesC ,
<Channel,MD > → allows}

• A Channel is the conduit that allows data to pass be-
tween interfaces.

• MD models the data transmitted through a channel.
• attributesC represents a set of attributes for the

Channel model.

474

A Data model MD is defined as follows:

ND ∈ {MM ,MF }
ED ∈ {}
ΣD ∈ {attributesD}
ΛD = {MM → attributesD,MF → attributesD}
• MM represents a Medium model, i.e., model of the

media types, e.g., audio video, text files and so on.
• MF represents a Form model. A Form is a user de-

fined type that allows the creation of complex data
types.

• attributesD is a set of attributes for the Data model.

A Form model MF is defined as follows:

NF ∈ {MM ,MF }
EF ∈ {<MF ,MM >,<MF ,MF >}
ΣD ∈ {attributesF , contains }
ΛD = {MM → attributesF ,MF → attributesF ,

<MF ,MM > → contains,
<MF ,MF > → contains}

• MM represents a Medium model.
• attributesF represents a set of attributes for Form.

A Medium model MM is defined as follows:

NM ∈ {Medium}
EM ∈ {}
ΣD ∈ {attributesM}
ΛD = {Medium → attributesM}
• MM represents a Medium model.
• attributesM represents a set of attributes for

Medium.

3.2 Views of Communication

The semi-formal model defined in Section 3.1 represents
the meta-model that can be used to generate a model for the
complete structure of communication services provided to
all the users for an application in some specified domain.
An example of such an application would be a surgeon
sharing patient data with the referring and attending doc-
tors immediately after surgery. Since our aim is to model
and realize communication services it is important to define
different views of the communication logic model. Note
that these views represent the aspects of communication in
the use cases that define the application. For example, the
surgeon and the doctors in the healthcare application each
has a view of the communication. We use the notion of
artifact introduced in Section 2.1 to define the view of a
communication logic model.

A view of a communication logic model MCL is an
artifact generated by applying constraints to MCL. It can
therefore be stated that different views of the model MCL

are all subgraphs of MCL. The constraints are applied
to the edges, alphabet of model labels andthe annotation
mapping function. In this paper we consider two views:
(1) Global view - the communication logic model MCL,

and (2) User view - an artifact, AMCL
, is a communication

model of one user’s perspective. We define the user view
as:

1. Each participant model, MP , is considered as a sin-
gleton.

2. There is a unique participant labeled as local.
3. All participants that can be reached from the local par-

ticipant through exactly one channel are labeled as re-
mote.

4. All channels in AMCL
are connected to the local par-

ticipant through one interface.
5. Each participant is connected to a channel through an

interface.
6. The only participants in AMCL

are labeled as local or
remote.

The global view captures the requirements of a com-
plete communication application. The user view cap-
tures communication requirements of one user’s perspec-
tive. The prototype presented in this paper realizes the user
view communication logic model. A user view can be pro-
jected from the global view by using a breadth-first traver-
sal. The algorithm is:

1. Label the participant p as local representing the spec-
ified user.

2. Label all associated interface of p as local interface.
3. Label all channel associated with labeled interface. If

a labeled interface has no associated channel, unlabel
it.

4. Find all unlabeled interfaces associated with labeled
channels. Label them as remote interface.

5. Label all dependent participants of remote interfaces
as remote.

In order to construct a global view of the communication
from several user views we assume that: (1) participant,
interface and channel in different user views have unique
identifier, and (2) input include views of all participants in
the communication logic model. The main steps in the al-
gorithm to merge all user views are as follows:

1. Set Nglobal as union of all users’ N .
2. Set Eglobal as union of all users’ E.
3. Create new labels and mapping functions to remove

duplicate information in user’s view.

3.3 UML Profile for Communication

In Section 3.1 we presented a semi-formal model for the
communication logic that can be used to construct a global
communication view consisting of a set of user communi-
cation views. The communication logic model is a meta-
model and therefore can support the various transforma-
tions used during model-driven development. The abstract
syntax and static semantics of this meta-model can there-
fore be used in tools to support the construction of valid

475

Stereotype Base Class Tagged Constraints
Values

<<Participant>> Class id: String May only be associated with instances of Interface. id is unique.
<<Interface>> Class id: String May be associated with at most one instance of Participant. id is unique.
<<Channel>> Class id: String May only be associated with instances of Interface and Data. id is unique.

<<Data>> Class
<<Local>> Participant There is only one instance of Local
<<Remote>> Participant
<<Device>> Interface
<<Medium>> Data
<<Form>> Data

<<isAttached>> Association Instances of Participant are associated with instances of Interface
<<allows>> Association Instances of Channel are composed of instances of Data.

<<contains>> Association Instances of Form are composed of instances of Medium.
<<connectTo>> Association Instances of Interface are associated with instances of Channel.

Table 1. UML Profile for the user’s view of a communication model

communication models. Given the fact that UML is a pop-
ular modeling language and UML artifacts can be imported
into MDD development environments [14] we have created
a UML 2 profile [9] for the user view of a communication
model.

The UML 2 profile for the user view of a commu-
nication model is shown in Table 1. UML 2 profiles are
specific kinds of packages that allows meta-models to be
created for specialized domains. The UML profile in Table
1 consists of three kinds of artifacts: (1) stereotypes - define
specific meta-classes, Column 1, (2) tagged values - define
meta-attributes, i.e. attributes of the stereotype, Column 3,
and (3) constraints - modeling guidelines i.e., restrictions
on how the meta-model maybe used, Column 4. For ex-
ample, in Row 1 the stereotype is << Participant>>
which is a base class, it contains the tagged value id of
type string String and it may only contain variables of
the class whose stereotype is <<Interface>>.

4. Architecture of Prototype

The prototype developed to model and realize user-level
communication services is based on the layered architec-
ture of the Communication Virtual Machine (CVM) [3].
The CVM enables the realization of models created using
the Communication Modeling Language (CML) [2]. The
CVM consists of the following layers: (1) user communi-
cation interface (UCI), allows users to declaratively specify
their communication needs and requirements (in CML), (2)
synthesis engine (SE), generates an executable script from
a CML model and negotiate the model with other partici-
pants in the communication, (3) user-centric communica-
tion middleware (UCM), executes the communication con-
trol script to manage and coordinate the delivery of com-
munication services, and (4) network communication bro-
ker (NCB), which interfaces with the underlying networks
to implement the communication services.

CML is a language generated from the user view of
communication logic model. It is used to define a commu-
nication schema as well as a communication instance. A

1. userSchema ::= local connection {connection}
2. connection ::= mediaAttached connection

remote {remote}
3. local ::= person isAttached device

4. remote ::= device isAttached person

5. mediaAttached ::= {medium} {form}
6. device ::= device deviceCapability {deviceCapability}
7. form ::= {form} {medium} | form

8. person ::= personNameA personIDA personRoleA

9. device ::= deviceIDA

10. medium ::= builtinTypeA mediumURLA

suggestedApplicationA actionA

11. deviceCapability ::= builtinTypeA

12. form ::= suggestedApplicationA actionA

13. actionA ::= ”send” | ”doNotSend” | ”startApplication”

Figure 1. EBNF representation of X-CML.

communication schema, or simply schema, defines the al-
lowed configurations and data transfers. A schema is syn-
onymous to a class in the object-oriented paradigm and an
instance to an object. There are two equivalent variants
of CML: the XML-based (X-CML) and the graphical (G-
CML). Figure 1 shows a simplified version of the X-CML
in EBNF form. The G-CML is used to create graphical
communication models for both communication schemas
and instances. The details of the CVM and CML can be
found in [3] and [2], respectively.

Figure 2 shows the high-level architecture of the pro-
totype. The top part of the figure shows the two possible
options a user have to interact with the UCI. The first op-
tion allows the expert user/developer to interact with the
prototype via the Communication Modeling Environment,
where G-CML models are created. The second option is a
user-friendly interface, external to the UCI, that allows the
novice user to create communication models using an in-
terface similar to that of an instant messenger application.
In this paper we focus on model construction and transfor-
mation with the objectives of realizing communication ser-

476

UCI-SE Interface

Communication
Modeling

Environment

Repository

User/Developer
(interactive)

UCI

X-CMLX-CML

X-CML instance

GUI Comm. Interface

Function Calls

Schema
Transformation
Environment

Synthesis Engine (SE)

Novice User GUI

Skype API

Skype Platform

Calls to Skype APIUser interactions
Flow of control and data
Flow of data only
Callbacks

Legend

UCI – User Communication Interface

Figure 2. Architecture of the prototype.

vices. To this end the functionality of the lower layers of
the CVM (UCM and NCB) are performed by Skype [11].

5. Realizing Communication Services

In this section we describe how models are created and re-
alized using the implementation of the prototype presented
in Section 4. A common scenario from the healthcare do-
main is used to illustrate how a developer can easily create
an application that provides communication services to a
doctor on-demand.

Scenario: After heart surgery Dr. Monteiro (the cardiolo-
gist) contacts Dr. Sanchez (family doctor) and Dr. Lopez
(a heart specialist) to update them on a patient’s condition.
During communication with doctors Dr. Sanchez and Dr.
Lopez, Dr. Monteiro sends them the post-surgery echocar-
diagram (echo) of the patient’s heart and a text summary of
the patient’s current condition.

5.1 Model Creation

Communication models are created and validated in the
UCI. The Communication Modeling Environment, shown
in the upper left hand corner of the UCI, see Figure 2, is
composed of (1) the graphical diagram editor used to create
and validate the graphical models, and (2) the G-CML to X-
CML transformer which converts the graphical model in G-
CML to a text representation of the model in X-CML. The
graphical diagram editor in the prototype was developed
using a combination of the Graphical Modeling Framework
(GMF) [15], the Eclipse Modeling Framework (EMF) [14]
and the Graphical Editing Framework [13]. A summary of
the steps used to create the graphical diagram editor are as
follows:

1. Create a UML class diagram for the G-CML meta-
model using a refined version of the UML profile in
Table 1.

2. Use the class diagram in Step (1) to generate the Ecore
model in EMF.

3. Through a series of transformations, the G-CML edi-
tor is generated from EMF [15]

4. The graphical diagram editor can now be used to cre-
ate the model and output its XML representation.

The G-CML to X-CML transformer converts the
XML representation of the G-CML model (G-CMLXML)
generated by the graphical diagram editor into the equiva-
lent X-CML representation. The G-CML model maybe a
schema or an instance of the required communication. An
outline of the algorithm used to convert G-CMLXML to
X-CML is as follows:

1. Parse the G-CMLXML.
2. For each “connection” shape (cg) in the parse tree of

G-CMLXML

(a) create the new “connection” element (cx) in X-
CML using the XML schema [2]

(b) Retrieve the shapes (Sg) directly linked to cg

(c) For each s ∈ Sg

i. create a new element in X-CML (sx)
ii. add sx as a child of cx, where sx maybe a

“device”, “medium”, or “form”

3. For each shape sg in the parse tree of G-CMLXML

where sg is a “person” or “isAttached”

(a) create the corresponding X-CML element for sg

The EBNF grammar shown in Figure 1 represents the
XML schema that is used to construct the X-CML repre-
sentation of the communication model.

5.2 Model Realization

Realizing a communication model requires two major
steps, these are (1) checking the communication model
to ensure it is a valid instance, and (2) translating the X-
CML model into a communication control script contain-
ing calls to the underlying platform (Skype). The first step
is performed by the Schema Transformation Environment
in the UCI. In order to realize a communication model
the Schema Transformation Environment loads either a
schema or instance from the repository (or the Commu-
nication Modeling Environment) and checks if all the re-
quired attributes have values. This checking is done by a
single traversal of the X-CML parse tree. If there are any
required attribute values missing, usually true in the case of
a schema, the user is requested to enter the missing values.
For example, if the communication model is a schema for
a two-party call then the user will be requested to enter the
callee id of the remote participant.

477

Figure 3. Screen shot of the communication schema.

Translating the X-CML model into a communication
control script is done in the Synthesis Engine, as stated in
Section 4. The following algorithm outlines how the X-
CML is converted into a communication control script and
executed for the initiation of communication.

1. Parse X-CML and traverse parse tree
2. For each connection ci,

(a) Identify the required media types associated
with ci

(b) Establish a connection with the remote user(s)
using a default type (e.g., audio)

(c) If other media types are required then negotiate
for each type. For example, if a video connec-
tion is required then listen for the remote video
status. If the video is available then invoke the
local video stream

Before a communication instance is realized the
Skype application should be running and the caller logged
in. Note that all participants in the communication should
have Skype accounts.

6. Related Work

Our survey of the literature shows that although there has
been much investigation done in domain specific model-

ing, there is currently no formal modeling techniques for
modeling user-level communication services. Widespread
modeling techniques currently used in software engineer-
ing and data modeling, like UML [9], are too generic and
lack the formalism required for domain modeling, such as
the modeling of user-level communication services. Green-
field et al. argue that although UML 2.0 is a useful mod-
eling language, it is not an appropriate language for MDD
[4]. Modeling and realizing communication aspects of ap-
plications for specific domains is still in its infancy.

Meanwhile, the software engineering community
has been working on software frameworks for IP-based
telecommunication (JAIN SIP [6], and Java Media Frame-
work [7]). However, these communication services are usu-
ally tightly coupled with user applications. By applying
the MDD [1] concepts, such as a visual modeling envi-
ronment, meta-models, and model transformations, we de-
couple communication services from the application logic,
hence providing a more effective way of modelling com-
munication logic.

Deng et al. [3] introduced the Communication Virtual
Machine (CVM) that provides the conceptual idea for the
rapid realization of communication services that uses a lay-
ered architecture. However, there is no discussion on the
theoretical foundations to support the automatic transfor-
mation of models between different layers of CVM. Clarke
et al. [2] defined a simple and declarative Communication

478

Modeling Language (CML) for modeling user-level com-
munication services. However, CML lacks a formal meta-
model, which is the basis for any attempt at complete au-
tomation [12]. The meta-model in this paper provides a
more complete and consistent approach to generating valid
G-CML models and supports the automatic transformation
between G-CML and X-CML. Using this meta-model, and
the control script meta-model we can further automate the
realization process.

7. Conclusion

In this paper we presented a semi-formal meta-model for
user-level communication services and a prototype that re-
alizes the communication aspects of an application using
a model-driven approach. The prototype accesses the ser-
vices of the underlying networks by using the Skype plat-
form. Currently the realization process focuses on a user’s
view of the communication, that is the communication for
an individual scenario. Our future work is to extend the
construction and realization of the communication model,
to include a global view. We also plan to investigate what
network services can be provided by other open platform
communication tools.

Acknowledgements
This work was supported in part by the National Science
Foundation under grant HRD-0317692.

References

[1] Colin Atkinson and Thomas Kuhne. Model-driven de-
velopment: A metamodeling foundation. IEEE Softw.,
20(5):36C41, 2003.
[2] Peter J. Clarke, Vagelis Hristidis, Yingbo Wang, Na-
garajan Prabakar, and Yi Deng. A declarative approach for
specifying user-centric communication. In Proceeding of
CTS 2006, pages 89 C 98. IEEE, May 2006.
[3] Yi Deng, S. Masoud Sadjadi, Peter J. Clarke, Chi
Zhang, Vagelis Hristidis, Raju Rangaswami, and Nagarajan
Prabakar. A communication virtual machine. In Proceed-
ing of COMPSAC 06, pages 521C531. IEEE Computer So-
ciety, 2006.
[4] J. Greenfield. Microsoft and domain specific languages.
http://blogs.msdn.com/jackgr/archive/
2004/12/20/327726.aspx (March 2007).
[5] B. Hailpern and P. Tarr. Model-driven development: the
good, the bad, and the ugly. IBM Syst. J., 45(3):451C461,
2006.
[6] JAIN-SIP.https://jain-sip.dev.java.net/
(March 2006).
[7] Java Media Framework API. Internet2 working groups,
and special in-terest groups, June 2005. http:
// java.sun.com/products/java-media/jmf/
(May 2005).

[8] Stephen J. Mellor, Anthony N. Clark, and Takao Fu-
tagami. Guest editors introduction: Model-driven develop-
ment. IEEE Softw., 20(5):14C18, 2003.
[9] Object Management Group. Unified modeling lan-
guage. http://www.uml.org/ (Oct. 2006).
[10] Shane Sendall andWojtek Kozaczynski. Model trans-
formation: The heart and soul of model-driven software
development. IEEE Softw., 20(5):42C45, 2003.
[11] Skype Limited. Skype developer zone, Feb. 2007.
https://developer.skype.com/.
[12] Thomas Stahl, Markus Vlter, Jorn Bettin, Arno Haase,
Simon Helsen, and Krzysztof Czarnecki. Model-Driven
Software Development: Technology, Engineering, Man-
agement. John Wiley and Sons, first edition, 2003.
[13] The Eclipse Foundation. Graphical editing framework
(gef). http://en.wikipedia.org/wiki/
Eclipse Modeling Framework (March 2007).
[14] Wikipedia. Eclipse modeling framework.
http://en.wikipedia.org/wiki/Eclipse
Modeling Framework (March 2007).
[15] Wikipedia. Graphical modeling framework.
http://en.wikipedia.org/wiki/Graphical
Modeling Framework (March 2007).

479

