
Runtime Models to Support User-Centric
Communication

Yingbo Wang, Peter J. Clarke, Yali Wu, Andrew Allen, and Yi Deng

School of Computing and Information Sciences
Florida International University

11200 SW 8th Street
Miami, FL 33199, USA

{ywang002,clarkep,ywu001,aalle004,deng}@cis.fiu.edu

http://www.cis.fiu.edu/

Abstract. The pervasiveness of complex communication services and
the need for end-users to play a greater role in modeling communication
services have resulted in the development of the Communication Model-
ing Language (CML). CML is a domain-specific modeling language that
can be used to declaratively specify user-centric communication services.
CML models are automatically realized using the Communication Vir-
tual Machine (CVM). The dynamic nature of end-user driven communi-
cation results in communication models being updated at runtime. This
paper focuses on CML runtime models in the Synthesis Engine (SE), a
layer in CVM, which is responsible for synthesizing these models into
executable control scripts. We describe how the CML models are main-
tained at runtime and how they can evolve during the realization of a
communication service.

Key words: Communication Model, Model Realization, Model evolu-
tion, Runtime

1 Introduction

Electronic communications have become pervasive in recent years. The improve-
ment in network capacity and reliability facilitates the development of commu-
nication intensive services and applications. These applications range from IP
telephony, instant messaging, video conferencing, to specialized communication
applications for telemedicine, disaster management and scientific collaboration
[1,2,3]. Deng et al [4] investigated a new technology for developing and rapidly
realizing user-centric communication services to respond to increasing commu-
nication needs. We limit the scope of the term communication in this paper to
denote the exchange of electronic media of any format (e.g., file, video, voice)
between a set of participants (humans or agents) over a network (typically IP).
The development process uses a domain-specific modeling language, the Com-
munication Modeling Language (CML), which is supported by an automated

http://www.cis.fiu.edu/

2 Yingbo Wang et al.

model realization platform, the Communication Virtual Machine (CVM). The
time and cost of developing communication services can be significantly reduced
by using the CVM platform for formulating, synthesizing and executing new
communication services.

A key part of rapidly realizing communication services is that users can
change CML models during execution. In addition, several models associated
with the communication service being realized can exist at runtime. These is-
sues raise the question of how to maintain CML runtime models and evolve
them in a seamless manner without affecting the current executing communica-
tion services. In this paper, we focus on handling CML runtime models in the
Synthesis Engine (SE) to address the challenges of model evolution as well as
model execution. SE is a layer in CVM, which is responsible for transforming
CML models into executable control scripts. These control scripts are executed
by the User-Centric Communication Middleware (UCM), a layer below the SE
in the CVM. The functionalities of SE includes: (1) maintaining and evolving
CML models at runtime, (2) the parsing and interpretation of CML models, and
(3) the generation of control scripts.

The rest of the paper is organized as follows. Section 2 introduces the CVM
technology. Section 3 presents a motivating scenario form the healthcare domain.
Section 4 describes the approach used to manipulate communication models at
runtime. Section 5 presents the related work and we conclude in Section 6.

2 Modeling and Realizing Communication Services

In this section we introduce the technology to support the model creation and
realization of user-centric communication services.

2.1 Communication Modeling Language (CML)

Clarke et al. [5] developed a language, Communication Modeling Language (CML),
for modeling user-centric communication services. There are currently two equiv-
alent variants of CML: the XML-based (X-CML) and the graphical (G-CML).
The primitive communication concerns that can be modeled by control CML
include: (1) participant, (2) attached device, (3) connection, and (4) data, in-
cluding simple medium and structured data, which can be transferred. Figure
1(a) shows a simplified version of X-CML using EBNF notation. The EBNF
notation represents an attributed grammar where attributes are denoted using
an “A” subscript, terminals are bold face and non-terminals are in italics.

A CML model is referred to as a communication schema or simply schema.
A schema consists of two parts: the control schema (CS) part which specifies an
instance of a topology (participant ids and the types of the exchanged media),
and the data exchange schema (DS) part which specifies actual media (name or
urls) to be exchanged across each connection. We refer the interested reader to
[5] for more details.

Runtime Models to Support User-Centric Communications 3

User / Application (Participant)

User Communication Interface
(UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Communication Broker
(NCB)

Communication Networks

CVM

1. userSchema ::= local connectionNT

 {connectionNT}

2. connectionNT ::= mediaAttached connection

 remote {remote}

3. local ::= person isAttached deviceNT

4. remote ::= deviceNT isAttached person

5. mediaAttached ::= {medium} {formNT}

6. deviceNT ::= device deviceCapability

 {deviceCapability}

7. formNT ::= {formNT} {medium} | form

8. person ::= personNameA personIDA
personRoleA

9. device ::= deviceIDA
10. medium ::= builtinTypeA mediumURLA

suggestedApplicationA

11. deviceCapability ::= builtinTypeA

12. form ::= suggestedApplicationA actionA
13. actionA ::= “send” | “doNotSend” |

“startApplication”

(a) (b)

Fig. 1. (a) EBNF representation of X-CML. (b) Layered architecture of CVM

2.2 Communication Virtual Machine (CVM)

The Communication Virtual Machine (CVM) [4] provides an environment that
supports the model creation and realization of user-centric communication ser-
vices. Figure 1(b) shows the layered architecture of the CVM. The CVM archi-
tecture divides the major communication tasks into four major levels of abstrac-
tion, which correspond to the four key components of CVM: (1) User Commu-
nication Interface (UCI), which provides a language environment for users to
specify their communication requirements in the form of a schema using X-CML
or G-CML; (2) Synthesis Engine (SE), generates an executable script (commu-
nication control script) from a CML model and negotiates the model with other
participants in the communication; (3) User-centric Communication Middleware
(UCM), executes the communication control script to manage and coordinate
the delivery of communication services to users, independent of the underly-
ing network configuration; (4) Network Communication Broker (NCB), which
provides a network-independent API to UCM and works with the underlying
network protocols to deliver the communication services.

3 Motivating Scenario

The authors have been collaborating with members of the cardiology division of
Miami Children’s Hospital (MCH) to study the applications of the CVM tech-

4 Yingbo Wang et al.

connection
person
Dr. Burke
023
Surgeon

Device(PC)isAttached isAttached

LiveAV LiveAudio

person
Ms. Smith
048
Nurse

Device(Virtual)

LiveAudio

medium
LiveAudio

(a)

connectionperson
Dr. Burke
023
Surgeon

Device(PC)isAttached

isAttached

LiveAV LiveAudio

isAttachedDevice(Virtual)

LiveAudio

person
Ms. Smith
048
Nurse

person
Dr. Monteiro
044
Attending
Physician

Device(Virtual)

LiveAudio

medium
LiveAudio

connection

medium
LiveAudio

isAttachedDevice(Virtual)

LiveAudio

person
Dr. Sanchez
041
Referring
Physician

LiveAV

(b)

Fig. 2. G-CML models for the scenario. (a) Initial G-CML model of commu-
nication between Dr. Burke and Nurse Smith, and (b) G-CML model after all
communication connections are established.

nology in the healthcare domain. One of the scenarios we reviewed is described
below.

Scenario: After performing surgery on a patient, Dr. Burke (surgeon) returns
to his office and establishes an audio communication with Ms. Smith (nurse)
to discuss the post-surgery care for the patient. During the conversation with
Ms. Smith, Dr. Burke establishes an independent video communication with
Dr. Monteiro (attending physician) to obtain critical information for the post-
surgery care of the patient. Dr. Burke later decides to invite Dr. Sanchez (re-
ferring physician) to join the conference with Dr. Monteiro to discuss aspects of
the post-surgery care. Dr. Sanchez’s communication device does not have video
capabilities resulting in only an audio connection being used in the conference
between Dr. Burke, Dr. Monteiro and Dr. Sanchez.

Figure 2 shows two of the three G-CML models created by Dr. Burke during
the execution of the scenario. Figure 2(a) shows Dr. Burke’s initial request for
audio communication with Ms. Smith and Figure 2(b) shows the final G-CML
model after Dr. Sanchez is added to the communication. Due to space limitations
we do not show the intermediate G-CML model containing only Dr. Burke, Ms.
Smith and Dr. Monteiro. A video clip of a similar scenario can be accessed at
http://www.cis.fiu.edu/cml/ that shows an interface for novice users.

4 CML Runtime Models

In this section we provide an overview of how a CML model (schema) is realized
by the CVM and the process of synthesizing a schema in the SE. In addition,

http://www.cis.fiu.edu/cml/

Runtime Models to Support User-Centric Communications 5

UCI SE UCM NCB

schema

(CS, DS) control Script API calls

events

(UCM, SE)

events

(SE)
schema

(CS, DS)

User
to/from Comm.

Frameworks

schema

analysis

schema from UCI

(CS, DS)

negotiation

re-negotiation
CS event

media

transfer

DS event

dispatcher

negotiation scripts & CS

media transfer

scripts & DS

control script for UCM

retrieve

schema

Schema

(CS, DS)schema event

from UCM

schema for UCI

(CS, DS)

(a)

(b)

Fig. 3. (a) Execution of a schema in the CVM. (b) Execution of a schema in the
synthesis engine (SE). CS - Control schema; DS - Data exchange schema

we describe our approach to handling the different CML models that may exist
at runtime.

4.1 Overview of Model Realization

Figure 3(a) shows the process of realizing a CML model (schema) in the CVM.
Each participant in the communication has a working CVM. UCI provides the
environment for users to create new schemas or load schemas from a repository.
SE accepts a schema from UCI or schema events from remote users via the UCM,
handles the negotiation process, coordinates the delivery of media, and synthe-
sizes control scripts. UCM is responsible for executing control scripts resulting
in API calls to the NCB running on top of a communication frameworks such
as Skype [6].

We limit the scope of this paper to the CML models that evolve and are
maintained in the SE layer at runtime. Our approach to maintain and evolve
the schemas at runtime in the SE involves three main processes: schema analysis,
(re)negotiation and media transfer as shown in Figure 3(b). SE accepts a local
UCI schema or a UCM event which contains a schema from the remote user,
shown on the left side of Figure 3(b). The schema analysis process interprets the
schema and generates events based on the runtime control schema (CS) or a data
exchange schema (DS). There are two groups of events generated: (1) CS event -
passed to (re)negotiation process and (2) DS event - passed to the media transfer
process. These two processes work concurrently and both generate control scripts
after processing their respective events. The dispatcher sends a control script to
the UCM for execution or an updated schema to the UCI to be displayed to the
user.

During the execution of a communication schema in the SE there may be
several CML control models being manipulated at the same time. These CML
models include: (1) the executing schema (may have several active connections)
which supports the media transfer process to provide a communication service,

6 Yingbo Wang et al.

Negotiation

negotiationComplete

connectionFailEvent

connectionTermination

TerminateConnection

H

Negotiation state is entered when
the connection is created for the first time

Renegotiation

MediaTransfer

Fig. 4. State machine for a ConnectionProcessor.

(2) an intended schema that represents a user’s request to change the executing
schema (per connection), and (3) a negotiating schema providing a transition
from the executing schema to the intended schema.

While it is possible to have multiple connections in a CML model, we dis-
cuss the runtime CML model in SE based on a single connection because each
connection operates independently of each other. Figure 4 shows the high-level
state machine for the ConnectionProcessor that represents the behavior of a
connection. The state machine in Figure 4 consists of four submachines (Nego-
tiation, Renegotiation, MediaTransfer and Terminate Connection). The subma-
chines Negotiation, Renegotiation, and MediaTransfer represent the behavior of
the processes with similar names in Figure 3.

4.2 Schema Analysis

The schema analysis process compares a received CS/DS for a connection with
the locally held CS/DS copy and produces specific events based on the results of
the comparison. These events may trigger a transition into the negotiation/rene-
gotiation process, media transfer process, or both (see Figure 3). Figure 5 pro-
vides a simplified algorithm of analyzing the CS to illustrate the idea of generat-
ing CS events. The algorithm takes the received schema and current schema as
input. Based on the source of the received schema (either from UCI or UCM),
the role of the local user (whether or not the initiator) and the current schema,
it would generate different CS events (line 4, 12, 18, 24 in Figure 5). We have a
detailed version of the algorithm that will be presented in a future publication.

4.3 Negotiation/Renegotiation

The ConnectionProcessor accesses the SchemaAnalysis subprocess to generate
CS events and DS events. CS events always affect the negotiation of a new CS or
the renegotiation based on an executing CS. DS events carry media transfer re-
quest supported by an executing CS. CS events include initiateNegotiation-
Event, receivedInvitationEvent, sameControlSchemaEvent, changeControl-
SchemaEvent, and terminateConnectionEvent. These events trigger actions for

Runtime Models to Support User-Centric Communications 7

1: analyzeSchema Control (receivedSchema, currentSchema)
/*Input: receivedSchema - new schema from the UCI or UCM

currentSchema - reference to schema in the (Re)Negotiation process
2: if receivedSchema is from UCI then
3: currentSchema ← receivedSchema
4: generate initiateNegotiationEvent /*handled by Negotiation/Renegotiation */
5: else if receivedSchema is from UCM and currentUser.isInitiator then
6: store receivedSchema in an internal recipient list
7: if all schemas from remote participants are received then
8: if mergeSchemas(all schemas) = currentSchema then
9: generate sameControlSchemaEvent /* the end of negotiation */

10: else
11: currentSchema ← mergeSchemas(all schemas)
12: generate changeControlSchemaEvent /*another round of negotiation */
13: end if
14: end if
15: else if receivedSchema is from UCM and !currentUser.isInitiator then
16: if currentSchema is null then
17: update currentSchema to include local capabilities
18: generate receivedInvitationEvent /*display the invitation */
19: else
20: if mergeSchemas(receivedSchema, currentSchema) = currentSchema then
21: generate sameControlSchemaEvent /* the end of negotiation */
22: else
23: currentSchema ← mergeSchemas(receivedSchema, currentSchema)
24: generate changeControlSchemaEvent /*the reply to a negotiation */
25: end if
26: end if

27: end if

Fig. 5. Algorithm to analyze control schema during negotiation.

creating control scripts and state transitions to handle a non-blocking three-
phase commit protocol for schema negotiation [7]. Similarly, DS events trigger
the transition of MediaTransfer submachine. Using part of the negotiation sub-
machine as an example, the initiateNegotiationEvent will trigger an action
sendSchemaRequest, which generates control scripts for sending an invitation,
and move the submachine to the waitingResponse state. Only the receipt of
the sameControlSchemaEvent, which indicates all invitees accept the invita-
tion, can trigger the action sendConfirmation for creating control scripts to
send confirmation of the negotiation and move the negotiation submachine from
waitingResponse to the negotiationComplete state.

4.4 Applying Runtime Model to Scenario

Three different intended CML models (schemas) are processed in the motivating
scenario (see Section 3). This subsection describes how SE maintains and evolves
the executing schema into an intended schema at runtime. Figure 6 shows the
SE environment. The intended schema (shown at the top of the figure) is sent
by UCI to SE for processing at runtime. This schema reflects that Dr. Burke (A)
wants to invite Dr. Sanchez (C) to join the discussions with Dr. Monteiro (B).
The executing schema is shown in ellipse labeled SE Global Schema, in which
Dr. Burke has already established two independent connections, one with Ms.
Smith (D)(handled by ConnectionProcessor C1 shown at the bottom of Figure
6) and the other with Dr. Monteiro (handled by ConnectionProcessor C2). Each

8 Yingbo Wang et al.

A

B

Audio Video

C2

ConnectionProcessor C2

Renegotiation

D

Audio

C1

ConnectionProcessor C1

Uses Participant
List for connection C2
From Global schema

A

B

Audio Video

C2

D

Audio

C1

MediaTransferAudio Video

C2

SE Global Schema

Send Schema

Control Schema Difference
Initiate Re-Negotiation

C

B

Audio Video

C2

C

A

SE

UCI

Fig. 6. CML model (control schema) being updated at runtime.

ConnectionProcessor contains two concurrent processes, one for renegotiation
and the other for media transfer.

When SE accepts the intended schema from the UCI, it is decomposed into
connection schemas and dispatched to the appropriate ConnectionProcessor.
ConnectionProcessor C1 finds no in CS or DS, which means no change in the con-
nection between Dr. Burke and Ms. Smith. For Connection Processor C2, it ac-
cesses the schema analysis process to compare the new intended CS (UCI schema
in Figure 6) with the executing one (the SE Global Schema). The schema analysis
process finds differences between these two CSs, which means the currently ex-
ecuting CS needs to be changed. It then generates initiateNegotiationEvent
to trigger the Renegotiation process to initiate schema evolution. The negotiat-
ing schema is held in Renegotiation process. While the renegotiation is occurring,
the MediaTransfer process in ConnectionProcessor C2 is still supporting the au-
dio and video connection between Drs. Burke and Monteiro using the executing
schema. When the renegotiation is complete, a confirmation from Dr. Sanchez’s
CVM triggers both processes in ConnectionProcessor C2. The Renegotiation
process moves to the Idle state and waits for the next request to evolve the CS.
The executing schema in ellipse labeled SE Global Schema is replaced by the
negotiated schema.

Runtime Models to Support User-Centric Communications 9

4.5 Discussion

Our approach for evolving models is similar to the typical control loop mecha-
nism found in control theory [8]. Schema analysis plays the role of the observer
and the CommunicationProcessor acts as the controller. Using CML for specify-
ing user-centric communication services, the types of changes that could occur
during runtime is predictable and enumerable resulting in a more stable system.
Evolution of a currently executing schema into a new schema includes negoti-
ating the schema and switching to the new negotiated schema with minimum
effect on the existing services. There are however several remaining questions to
be addressed: (1) If the schema evolution is unsuccessful due to an exception,
how can the SE rollback to the previous schema? (2) How to keep track of the
evolution history of the runtime models? and (3) How to effectively maintain
consistency between the executing SE schema and the execution state of the
lower layers in the CVM? These open questions would motivate future research
in this area.

5 Related Work

Addressing the maintenance and evolution of runtime models in a constantly
changing and interactive environment is a major research problem in the area
of MDE. Depending on the problem at hand, models might need to evolve to be
synchronous with the runtime application through dynamic adaptation, or the
runtime system needs to be adapted as the input model evolves. We will see how
these problems are addressed in the community.

In Prawee et al [9], the authors developed a framework for co-evolution of
system models and runtime applications. As a system is described in the forms of
ADLs models and then projected toward an implementation platform, dynamic
system adaptation can cause the running system to be out-of-synchronous with
its model. The proposed framework enables a system/model evolution and pro-
vides architects with consistent views of running systems and their models. We
use a different methodology to adapt our CVM at runtime. New communication
requirements are represented by an intended CML model and result in a model
evolution which leads to the runtime environment adaptation.

Van der Aalst [10] use a generic workflow process model to handle dynamic
change of executing processes. Since the change of an executing control flow is a
more complicated process, whereby new tasks could be added, old ones replaced,
and the order of tasks changed, the number of types of model changes that could
occur during runtime becomes significant. How to keep track of different vari-
ants of the processes and decide on the safe states for migration is challenging.
The paper proposed a generic process model with a minimal representative for
each process family to give a handle to deal with these problems. We address
similar problems in that we need to manage various CML models during run-
time and perform a safe migration of an executing CML model into a new one.
However since we are only limited to the communication domain, the types of

10 Yingbo Wang et al.

possible model changes are fewer and ways of effecting the change could be more
dedicated then the general workflow model update.

6 Conclusions and Future Work

In this paper we provided an approach that shows how the Synthesis Engine
(SE), a layer in the Communication Virtual Machine (CVM), maintains and
evolves runtime models during the realization of user-centric communication
services. Three processes were presented that support these activities includ-
ing: schema analysis, (re)negotiation and media transfer. In addition, a scenario
from the healthcare domain was used to show how these processes can be applied
during the execution of a communication service. Our future work involves inves-
tigating techniques for handling schema rollback, maintaining a schema history
and ensuring the consistency of runtime models in the different layers of CVM.

Acknowledgments

This work was supported in part by the National Science Foundation under grant
HRD-0317692. The authors thank the reviewers for their insightful comments.

References

1. Burke, R.P., White, J.A.: Internet rounds: A congenital heart surgeon’s web log.
Seminars in Thoracic and Cardiovascular Surgery 16(3) (2004) 283–292

2. FEMA: DisasterHelp http://www.disasterhelp.gov/start.shtm (May 2008).
3. Cyberbridges: Center for Internet Augmented Research and Assessment http:

//www.cyberbridges.net/archive/summary.htm (Nov2007).
4. Deng, Y., Sadjadi, S.M., Clarke, P.J., Hristidis, V., Rangaswami, R., Wang, Y.:

CVM - a communication virtual machine. Journal of Systems and Software (2008)
(in press).

5. Clarke, P.J., Hristidis, V., Wang, Y., Prabakar, N., Deng, Y.: A declarative ap-
proach for specifying user-centric communication. In: Proceeding of CTS 2006,
IEEE (May 2006) 89 – 98

6. Skype Limited: Skype developer zone (Feb. 2007) https://developer.skype.

com/.
7. Rangaswami, R., Sadjadi, S.M., Prabakar, N., Deng, Y.: Automatic generation of

user-centric multimedia communication services. In: Proceedings of IPCCC. (April
2007) 324–331

8. Muller, P.A., Barais, O.: Control-theory and models at runtime. In: Proceeding of
2nd International Workshop on Models@run.time. (Sept 2007)

9. Sriplakich, P., Waignier, G., Meur, A.F.L.: Enabling dynamic co-evolution of mod-
els and runtime applications. In: Proceedings of COMPSAC, Los Alamitos, CA,
USA, IEEE Computer Society (2008) 1116–1121

10. der Aalst, W.M.P.V.: Generic workflow models: How to handle dynamic change
and capture management information? In: COOPIS ’99: Proceedings of the Fourth
IECIS International Conference on Cooperative Information Systems, Washington,
DC, USA, IEEE Computer Society (1999) 115

http://www.disasterhelp.gov/start.shtm
http://www.cyberbridges.net/archive/summary.htm
http://www.cyberbridges.net/archive/summary.htm
https://developer.skype.com/
https://developer.skype.com/

	Lecture Notes in Computer Science
	Authors' Instructions
	Introduction
	Modeling and Realizing Communication Services
	Communication Modeling Language (CML)
	Communication Virtual Machine (CVM)

	Motivating Scenario
	CML Runtime Models
	Overview of Model Realization
	Schema Analysis
	Negotiation/Renegotiation
	Applying Runtime Model to Scenario
	Discussion

	Related Work
	Conclusions and Future Work

