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Abstract—The pervasiveness of complex communication ser-
vices and the need for end-users to play a greater role in de-
veloping communication services have resulted in the creation
of the Communication Virtual Machine (CVM) technology.
The CVM technology consists of a Communication Modeling
Language (CML) and the CVM. CML is a declarative modeling
language that can be used to specify domain-specific commu-
nication services and the CVM is the platform used to realize
the CML models.

In this paper we explicitly define the operational semantics
of CML to support (1) the synthesis of CML models into exe-
cutable control scripts and (2) the handling of negotiation and
media transfer events during communication. We specify the
semantics of CML using label transition systems and describe
in detail an algorithm that is essential for the interpretation
of CML models. A case study is presented showing how the
semantics support the rapid realization of a scenario from the
healthcare domain.

Keywords-Collaborative Networks, User-Centric Communi-
cation, Model-Driven Development

I. INTRODUCTION

The pervasiveness of electronic communication such as
IP telephony, instant messaging and video conferencing has
resulted in the need for a new approach to developing
user-centric communication applications. The need is further
magnified by the use of these technologies in special-
ized communication applications for telemedicine, disaster
management and scientific collaboration [1], [2], [3]. The
traditional stovepipe approach of developing communication
intensive application binds the user-level communication
logic with device types and underlying networks. Rapidly
changing network capabilities and communication devices
result in new communication needs. Unfortunately, existing
applications cannot cater to unanticipated communication
requirements without the development of systems resulting
in high cost and a lengthy development cycle.

In response to the need to rapidly develop user-centric
communication applications Deng et al. [4] created a new
paradigm based on the Communication Virtual Machine
(CVM) technology for modeling and rapidly realizing user-
centric communication services. We use the term user-
centric to refer to those applications that provide services to
the user, offer operating simplicity, and mask the complexity
of the underlying technology [5]. We limit the scope of the

term communication in this paper to denote the exchange of
electronic media of any format (e.g., file, video, voice) be-
tween a set of participants (humans or agents) over a network
(typically IP). The development process uses models cre-
ated using the Communication Modeling Language (CML).
CML models capture the user communication requirements
and are automatically realized using the CVM. The time
and cost of developing communication applications can be
largely reduced by using the CVM platform for formulating,
synthesizing and executing new user-centric communication
services.

The current version of CML [6] lacks a complete set of
operational semantics resulting in the CVM being limited
to realizing simple static communication models. In this
paper, we investigate the operational semantics of CML with
respect to the synthesis process in CVM presented in [4].
The contributions of this paper include:

∙ Defining the behavioral models for the operational
semantics of CML to support (1) the synthesis of
CML models into executable control scripts and (2)
the handling of negotiation and media transfer events
during communication.

∙ Defining a detailed algorithm to analyze CML models
during model realization.

∙ Describing the synthesis of a scenario from the health-
care domain.

The rest of the paper is organized as follows. Section
II introduces the CVM technology. Section III defines the
operational semantics for the synthesis of CML models.
Section IV details how the operational semantics are applied
to a medical scenario and states the limitations of our
approach. Section V presents the related work and we
conclude in Section VI.

II. CVM TECHNOLOGY

In this section we provide background on the CVM
technology [4]. The technology consists of CML [6], used to
model user-centric communication requirements, and CVM,
the platform to realize user communication models.

A. Communication Modeling Language

There are currently two equivalent variants of CML: the
XML-based (X-CML) and the graphical (G-CML). The



1. communicationSchema ::= controlSchema | dataSchema

2. controlSchema ::= partyLocal connection {connection}

3. connection ::= connection dataType {dataType} partyRemote 

{partyRemote}

4. partyLocal ::= person isAttached device

5. partyRemote ::= device isAttached person

6. device ::= device deviceCapability {deviceCapability}

7. dataType ::= mediumType | formType

8. formType ::= formTypeHeader dataType {dataType}

formTypeEnd

9. connection ::= connectionIDA  bandwidthA

10. person ::= personNameA personIDA personRoleA

11. isAttached ::= deviceIDA personIDA

12. device ::= deviceIDA

13. deviceCapability ::= builtinTypeA

14. mediumType ::= mediumTypeNameA derivedFromBuiltInTypeA
suggestedApplicationA  voiceCommandA

15. formTypeHeader ::= formTypeNameA suggestedApplicationA
voiceCommandA actionA

16. dataSchema ::= connection data {data} | connection request

17. connection ::= connectionIDA  bandwidthA

18. data ::= medium | form

19. form ::= formHeader data {data}  formEnd 

20. medium ::= mediumDataTypeA mediumNameA mediumURLA
mediumSizeA lastModifTimeA validityPeriodA firstTransferTimeA
voiceCommandA

21. formHeader ::= formDataTypeA formIDA suggestedApplicationA
voiceCommandA actionA layoutSpecificationA

22. request ::= requestIDA mediumNameA actionA

Figure 1. EBNF representation of X-CML.

primitive communication operations that can be modeled
by CML include: (1) connection establishment, (2) data
(primitive and user-defined) transfer, (3) addition/removal
of participants to/from a communication, (4) dynamic cre-
ation of structured data, and (5) specification of properties
associated with a particular data transfer. Figure 1 shows
a simplified version of X-CML using EBNF notation. The
EBNF notation represents an attributed grammar where
attributes are denoted using an “A” subscript, terminals are
bold face and non-terminals are in italics. This version of
CML is an extension of the one presented in [4].

Two categories of communication models can be de-
scribed using CML, communication schemas and commu-
nication instances. The relation between a schema and an
instance is similar to the relation between a class and an
object in programming languages. An instance captures all
information in a communication at a particular point in time
and can be directly executed. On the other hand, a schema
describes the possible communication configurations of a
conforming instance. Rule 1 in Figure 1 defines a communi-
cation schema as either a control schema or a data schema. A
control schema (Rule 2) specifies the configuration required

to set up one or more connections in a communication
and the data schema (Rule 16) specifies the media to be
transfered across a connection at an instance in time. In
Section IV we present a medical scenario and the associated
G-CML communication instance.

B. Communication Virtual Machine

CVM [4] provides an environment that supports the mod-
eling and realization of user-centric communication services.
The CVM architecture divides the major communication
tasks into four major levels of abstraction, which correspond
to the four key components of CVM: (1) User Communi-
cation Interface (UCI), provides a modeling environment
for users to specify their communication requirements using
CML; (2) Synthesis Engine (SE), generates an executable
script (communication control script) from a CML model
and negotiates the model with other participants in the
communication; (3) User-centric Communication Middle-
ware (UCM), executes the communication control script to
manage and coordinate the delivery of communication ser-
vices to users; (4) Network Communication Broker (NCB),
provides a network-independent API to UCM and works
with the underlying network protocols to deliver the com-
munication services.

C. Realizing a Communication Model

Figure 2(a) shows the flow of execution when a communi-
cation model is realized by the CVM. Execution starts when
the user submits a CML model to be executed, this model
is validated and converted into a control schema (CS) and
a data exchange schema (DS) pair. The (CS, DS) is then
passed to the SE where it is analyzed and converted into
a control script to be executed by the UCM. The UCM
executes the script and makes API calls to the NCB that
interfaces with the underlying communication frameworks
e.g., Skype [7] or Smack [8]. The NCB interacts with
the communication frameworks and generates UCM or SE
events that are handled by their respective CVM layers.
Updates to an executing schema are sent to the UCI to be
displayed to the user.

In this paper we focus on the operational semantics of
CML models with respect to the SE. Figure 2(b) provides
an overview of the actions performed by the SE in order
to realize use-centric communication. The three major pro-
cesses of the SE (shown in ovals) are schema analysis,
(re)negotiation and media transfer [9]. The (re)negotiation
and media transfer processes, enclosed in the dashed line, are
created per connection. There are two components shown in
the figure that support the activities of these processes, SE
Controller - coordinates incoming schemas and events, and
SE Dispatcher - coordinates outgoing events and scripts.

The schema analysis process accepts as input a schema
consisting of a (CS, DS) pair from the UCI or from the UCM
via an SE event. The schema is compared to the current
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Figure 2. (a) Execution of a schema in the CVM. (b) Execution of schema in the synthesis engine (SE). CS - Control schema; DS - Data schema

schema in the SE, which may be null schema, and the results
passed to the SE Controller. Based on the type of CS event
generated the (re)negotiation process is started or the current
negotiating process is updated. Similarly, a DS event may
cause a media transfer process to start or be updated. Both
the (re)negotiation and media transfer processes generate
control scripts to be processed by the UCM or schemas to
be processed by the UCI. Additional details of the SE are
presented in [4], [10].

Figure 3 shows a grammar for the control script language
using EBNF. Note the grammar is not complete, e.g., there
are no type definitions or brackets for the parameters.
Rule 1 states that a control script consists of one or more
commands and Rule 2 shows the various script commands.
The strings in bold represent the actual command and the
attributes represent the parameters the command can take.
For example, Rule 3 states that createConnectionCmd is
composed of the string createConnection and takes one
parameter consisting of a connection id. We have defined the
complete metamodel definitions for CML and the control
script language using ECore [11], however for readability
purposes we show them using an attributed EBNF grammar.

III. OPERATIONAL SEMANTICS FOR SYNTHESIS

In this section we describe the operational semantics
required to realize user-centric communication. We do not
use the inference rule notation to describe the semantics
but describe them using labeled transition systems [12]
represented in tabular form. Recall SE is responsible for
executing the semantic-rich CML model, which includes
schema negotiation and renegotiation, and media transfer.

A. Overview of Synthesis

We describe the operational semantics of CML models
during synthesis as a set of model transformations from the
metamodel of CML (input to SE) to the metamodel of the

control script (output of SE). Figures 1 and 3 show the meta-
models for CML and the control script language, respec-
tively. In addition to the transformation from CML models to
control scripts, the synthesis process also involves the use of
special control commands from the UCI. Examples of these
special control commands are login, logout and accept/reject
connection. In this paper we do not explicitly model these
commands as input to the transformation process.

The behavior associated with a connection in a com-
munication scenario is specified as a sequence of schema
pairs of the form (CSi,DSi), where i = 0, 1 ⋅ ⋅ ⋅ n, CS is a
control schema and DS a data exchange schema. We define
a connection as a link between participants in the same
communication space. The initial schema pair (CS0,DS0)
represents the initial state of the system with respect to some
new connection to be established. That is, CS0 and DS0

both represent null schemas. The schema pair (CS1,DS1)
represents the schema pair that carries the control schema
(CS1) with the initial configuration for a new connection.
Note that in this schema pair the data schema (DS1) is null.

Since the behavior for a given communication scenario
is captured in a sequence of schema pairs the operational
semantics will also be defined based on schema pairs. We
will define the operational semantics on the schema pairs
{(CSi,DSi), (CSi+1,DSi+1)} for a specific connection. The
pair (CSi+1,DSi+1) represents input from either the UCI or
UCM and the pair (CSi,DSi) represents previous schemas
processed by the SE and stored in the SE environment (Envi).
We therefore define the operational semantics of the CML
models as a set of transformations (=⇒) defined as follows:

((CSi+1,DSi+1),Envi) =⇒
((CSout,DSout), Scripti+1,Envi+1)

where:
(CSi+1,DSi+1) - input schema pair from the UCI or UCM.
Envi - current environment of the SE consisting of:



1. controlScript := command {command}

2. command := createConnectionCmd | closeConnectionCmd | 

addParticipantCmd | removeParticipantCmd | sendSchemaCmd | 

enableMediaInitiatorCmd | enableMediaReceiverCmd | 

disableMediaInitiatorCmd | disableMediaReceiverCmd | 

sendMediaCmd | sendFormCmd | declineConnectionCmd | 

requestFormCmd | requestMediaCmd | sendNegTokenCmd | 

requestNegTokenCmd

3. createConnectionCmd := createConnection connectionIDA

4. closeConnectionCmd := closeConnection connectionIDA

5. addParticipantCmd := addParticipant connectionIDA personIDA

{personIDA}

6. removeParticipantCmd := removeParticipant connectionIDA

personIDA {personIDA }

7. sendSchemaCmd := sendSchema connectionIDA sender-personIDA

receiver-personIDA {receiver-personIDA} schemaA

8. enableMediaInitiatorCmd := enableInitiatorMedia connectionIDA 

mediaNameA

9. enableMediaReceiverCmd := enableReceiverMedia connectionIDA  

mediaNameA

10. disableMediaInitiatorCmd := disableInitiatorMedia connectionIDA 

mediaNameA

11. disableMediaReceiverCmd := disableReceiverMedia

connectionIDA  mediaNameA

12. sendMediaCmd := sendMedia connectionIDA mediaNameA 
mediumURLA

13. sendFormCmd := sendForm connectionIDA formIDA mediumURLA 
{mediumURLA } actionA

14. declineConnectionCmd := declineConnection sender-personIDA

receiver-personIDA {receiver-personIDA}

15. requestFormCmd := requestForm connectionIDA formIDA

mediumURLA {mediumURLA }

16. requestMediaCmd := requestMedia connectionIDA mediaNameA 

17. sendNegTokenCmd  := sendNegToken personIDA

18. requestNegTokenCmd := requestNegToken connectionIDA

Figure 3. EBNF for the control script.

(CSi,DSi) - CS and DS in the SE that is used
for comparison with (CSi+1,DSi+1), where CSi ∈
{CSneg,CSexe}, CSneg is the CS currently being nego-
tiated and CSexe is the currently executing CS, i.e.,
the most recently negotiated CS. DSi is the currently
executing DS.

Negi - current state of the SE with respect to
(re)negotiation and includes CSneg

MTi - current state of the SE with respect to media
transfer and includes DSi.

(CSout,DSout) - schema pair generated during the transfor-
mation process. This pair contains the CS and DS schemas
that may be sent to the UCI.

Scripti+1 - control script sent to the UCM for processing
and defined using the EBNF shown in Figure 3.

Envi+1 - updated SE environment after the most recent
transformation. The structure is similar to Envi stated above.

1: analyze CS (ref CSi+1, ref Envi, sourceCS)
/*Input: CSi+1 - schema from the UCI or UCM

Envi - current environment object
sourceCS - source of CS, UCI or UCM

Output: ccs, an object with CS changes and an event trigger */
2: ccs ← compare(CSi+1, Envi.CSi)
3: if sourceCS == UCI then
4: if ccs.enum ∈ {initialCS} then
5: ccs.addEvent(initiateNeg)

/* SE Controller uses this event to start the state
machines (SMs) for negotiation and media transfer
and passes the initiateReNeg to the negotiation SM */

6: else if ccs.enum ∈ {selfRemoved} then
7: ccs.addEvent(removeSelf)
8: else
9: ccs.addEvent(initiateReNeg)

10: end if
11: else if sourceCS == UCM && self.isInitiator then
12: if ccs.enum ∈ {no Change} then
13: ccs.addEvent(localSameCS)
14: else
15: ccs.addEvent(localChangeCS)
16: end if
17: else
18: /*sourceCS == UCM && !self.isInitiator */
19: if Envi.CSi == null then
20: ccs.addEvent(intiateInviteNeg)

/* SE Controller uses this event to start the state
machines (SMs) for negotiation and media transfer
and passes the inviteNeg to the negotiation SM */

21: else if ccs.enum ∈ {no Change} then
22: ccs.addEvent(remoteSameCS)
23: else if ccs.enum ∈ {partyRemoved} then
24: ccs.addEvent(removeParty)
25: else
26: ccs.addEvent(remoteChangeCS)
27: end if
28: end if
29: return ccs

Figure 4. Algorithm to analyze CS.

B. Schema Analysis

The schema analysis process is invoked by the SE Con-
troller after receiving a schema from the UCI or a schema
event from the UCM, see Figure 2(b). The algorithm for
analyzing a schema is composed of two sub-algorithms,
these are (1) analyze CS for analyzing CSs, shown in
Figure 4, and (2) analyze DS for analyzing DSs, shown
in Figure 5. The input parameters to both algorithms include
a schema from the SE Controller (CSi+1 or DSi+1), a ref-
erence to the current environment of the SE (Envi), and the
source of the schema to be analyzed (UCI or UCM). Each
algorithm returns an object that contains the specific changes
between the two schemas, including the event that triggers
the transitions in the state machines for (re)negotiation and
media transfer.

The compare function, line 2, in both algorithms computes
the change between the new schema and current schema and
stores them in the object ccs, for CSs, or cds, for DSs.
The fields in this object include an enumeration that specifies
the category of change, e.g., initialCS as shown on line
4 in Figure 4, among other information used during the
execution of the state machines. Applying the analyze CS
algorithm to the input parameters CS1 - the new schema



1: analyze DS (ref DSi+1, ref Envi, sourceDS)
/*Input: DSi+1 - schema from the UCI or UCM

Envi - current environment object
sourceDS - source of DS is either UCI or UCM

Output: - cds, an object with DS changes and an event trigger */
2: cds ← compare(DSi+1, Envi.DSi)
3: if sourceDS == UCI then
4: if cds.enum ∈ {streamAdded} then
5: cds.addEvent(enableStream)
6: else if cds.enum ∈ {streamRemoved} then
7: cds.addEvent(disableStream)
8: else if cds.enum ∈ {nonStreamAdded} then
9: cds.addEvent(sendNonStream)

10: else if cds.enum ∈ {formAdded} then
11: cds.addEvent(sendForm)
12: end if
13: else
14: /*sourceDS == UCM*/
15: if cds.enum ∈ {streamAdded} then
16: cds.addEvent(enableStreamRec)
17: else if cds.enum ∈ {streamRemoved} then
18: cds.addEvent(disableStreamRec)
19: else if cds.enum ∈ {nonStreamAdded} then
20: cds.addEvent(recNonStream)
21: else if cds.enum ∈ {receiveForm} then
22: cds.addEvent(recForm)
23: end if
24: end if
25: return cds

Figure 5. Algorithm to analyze DS.

for a connection, (Env0) - containing - CS0 the null CS
schema, and the source of CS1 is the UCI, results in a ccs
object being generated with initialCS as the enumerated
change. The initialCS change results in analyze CS
returning initiateNeg as the trigger event field in the
ccs object to the SE Controller. The SE Controller uses the
contents of the ccs or cds object to either (1) create the
initial state machines for (re)negotiation and media transfer,
and/or (2) send the object to the executing state machine to
trigger the appropriate transition(s) and be used during the
execution of the specified actions.

C. Negotiation

The state machine for (re)negotiation is created by the
SE Controller when the initiateNeg is returned as an
event trigger field in the ccs object from analyze CS.
The (re)negotiation state machine works independently of
the media transfer state machine, both are implemented as
threads. Once the (re)negotiation state machine is created all
other objects returned from analyze CS are sent directly
by the SE Controller to the executing state machine. Table
I shows the state machine for schema (re)negotiation. The
table has six columns, the columns from left to right are:
the transition number, the source and target states, the event
to trigger the transition, the guard to be satisfied before the
transition can be triggered and the action to be taken after
the transition has been triggered. For example, transition 1
between the source state NegReady and the target state
NegInitiated is triggered by the initiateReNeg
event, assuming that the environment has the negotiating

token (hasNegToken is true). As a result of the transition
being triggered a negotiation block is added to the new con-
trol schema, addNegBlock(CSi+1), and a script to create
the connection is generated, genConnection Script.

In Table I we use the following notations for guards and
actions:

∙ hasNegToken - negotiating token that must be ob-
tained before starting a negotiation.

∙ # remoteParty - number of remote participants in
the negotiation.

∙ # responses - number of responses from the remote
participants

∙ addNegBlock(CSi+1) - block in the schema that
keeps data associated with the negotiation process, e.g.,
sender’s id, negotiation initiator’s id.

∙ genXXX Script - generates the XXX control script.
Recall a control script may contain one or more script
commands.

∙ update(CSi+1) - updates the schema being negoti-
ated based on changes such as, removal of a participant
or removing self from the schema.

∙ UCI.notify(CSi+1) - send a CS to the UCI to
inform the user of the state of the negotiation.

The Initial and Final states are shown in bold. Note that
transition 5 results in an action that replaces the current
schema with the negotiated schema (CSi+1). In Section IV
we show examples of the control scripts for (re)negotiation
in Table III.

D. Media Transfer
The media transfer state machine, shown in Table II, is

similar in structure to the table for (re)negotiation. Although
we do not show it in Table II the executing DS is updated
for transitions 1 through 12, i.e., the entry DSi ← DSi+1

should be in the Action column. We use a similar notation
for the guards and actions as shown below:

∙ streamEnabled - is a boolean that represents if
the live stream (audio, video, audio-video) specified in
DSi+1 is enabled, see the predefined types for CML in
[4]

∙ # streams - represent the number of active live
streams.

∙ UCI.notify(DSi+1) - send the data schema to the
UCI to inform the user that a new media is enabled or
received from a remote participant.

The change object cds returned from the analyze DS
contains the information required by the state machine to
trigger transitions and perform actions. For example, transi-
tion 1 in Table II represents the transition from source state
Ready to target state StreamEnabled. This transition
does not have a guard and the resulting script generated,
genStreamEnabled Script, enables the stream on the
sender’s end of the communication. In next section we show
examples of the control scripts for media transfer.



Table I
STATE MACHINE FOR SCHEMA NEGOTIATION.

Trans. Source State Target State Event Guard Action
0 Initial NegReady initiateNeg ∥

intiateInviteNeg
1 NegReady NegInitiated initiateReNeg hasNegToken addNegBlock(CSi+1)

genConnection Script
2 NegInitiated WaitingSameCS # remoteParty != 0 genSendCS Script
3 WaitingSameCS WaitingSameCS localSameCS # responses < # remoteParty
4 WaitingSameCS NegComplete localSameCS # responses == # remoteParty genSendCS Script
5 NegComplete NegReady CSexe ← CSi+1

UCI.notify(CSi+1)
6 WaitingSameCS WaitingAnyCS localChangeCS update(CSi+1)
7 WaitingAnyCS WaitingAnyCS localSameCS # responses < # remoteParty
8 WaitingAnyCS WaitingAnyCS localChangeCS # responses < # remoteParty update(CSi+1)
9 WaitingAnyCS NegInitiated # responses == # remoteParty update(CSi+1)

10 WaitingSameCS WaitingAnyCS after 5 sec. # remoteParty > 1 update(CSi+1)
11 WaitingAnyCS WaitingAnyCS after 5 sec. # remoteParty > 1 update(CSi+1)
12 WaitingSameCS NegTerminateInit after 5 sec. # remoteParty == 1
13 WaitingAnyCS NegTerminateInit after 5 sec. # remoteParty == 1
14 NegReady NegRequested inviteNeg notifyUCI InviteNeg
15 NegRequested NegTerminateRemote UCI.rejectInvite genRejectInvite Script
16 NegTerminateInit Final UCI.notify(CSi+1)

genCloseConnect Script
17 NegTerminateRemote Final
18 NegRequested InviteAccepted UCI.acceptInvite genConnection Script
19 InviteAccepted WaitingConfirm genSendCS Script
20 WaitingConfirm NegComplete remoteSameCS UCI.notify(CSi+1)
21 WaitingConfirm InviteAccepted remoteChangeCS update(CSi+1)
22 WaitingConfirm NegTerminateRemote after 5 sec. UCI.notify(CSi+1)

genCloseConnect Script
23 NegReady SelfRemoved removeSelf hasNegToken genRemoveSelf Script
24 NegReady NegReady removeParty # remoteParty > 1 update(CSi+1)

CSexe ← CSi+1

genRemoveParty Script
25 NegReady PartyRemoved removeParty # remoteParty == 1 genCloseConnect Script
26 PartyRemoved Final UCI.notify(CSi+1)
27 SelfRemoved Final

IV. APPLYING SEMANTICS TO THE SCENARIO

In this section we describe a scenario from the healthcare
domain and show how the synthesis process realizes a user-
centric communication service.

A. Domain Specific Scenario

The authors have been collaborating with members of the
cardiology division of Miami Children’s Hospital (MCH)
over the last 3 years to study the applications of the CVM
technology in healthcare. One such scenario involves post-
surgery consultation between Dr. Burke - heart surgeon, Dr.
Monteiro - attending physician and Ms. Smith - attending
nurse.

Scenario: After performing surgery on patient baby Jane,
Dr. Burke returns to his office and establishes a live au-
dio/video communication with Dr. Monteiro and Ms. Smith
to discuss the post-surgery care for the patient. Dr. Burke
dynamically creates the post-surgery medical record con-
taining a text summary of baby Jane’s vital signs and the
echocardiogram (echo) of her heart captured during surgery

and shares it with Dr. Monteiro and Ms. Smith while
discussing the post-surgery care. After the discussion Dr.
Burke terminates the communication. □

Figure 6 shows several of the G-CML models generated
during communication for the scenario. Figure 6 part (a)
shows the CS for the scenario and parts (b) and (c) show
successive DSs used during the communication. We do not
show all the fields in the schemas only those that help in
the presentation. In addition, the various versions of the
CSs used during termination of the communication are not
shown. We assume the system is initialized with the null CS
and null DS. The G-CML shown in Figure 6(a) represents
a pre-defined schema that Dr. Burke loads into the user
interface for novice users, see the screen shots in [4, page
1656].

B. Synthesizing the Model

During the synthesis of the models for the scenario several
control scripts are generated, these scripts are shown in the
leftmost column of Table III. The first column in the table
shows the user id of the SE on which the control script is



Table II
STATE MACHINE FOR MEDIA TRANSFER.

Trans. Source State Target State Event Guard Action
0 Initial Ready initiateNeg ∥ intiateInviteNeg
1 Ready StreamEnabled enableStream genStreamEnable Script
2 Ready StreamEnabled enableStreamRec genStreamEnableRec Script

UCI.notify(DSi+1)
3 StreamEnabled StreamEnabled enableStream !streamEnabled genStreamEnable Script
4 StreamEnabled StreamEnabled disableStream streamEnabled && # streams > 1 genStreamDisable Script
5 StreamEnabled StreamEnabled enableStreamRec !streamEnabled genStreamEnableRec Script

UCI.notify(DSi+1)
6 StreamEnabled StreamEnabled disableStreamRec streamEnabled && genStreamDisableRec Script

# streams > 1 UCI.notify(DSi+1)
7 StreamEnabled StreamEnabled sendNonStream genNonStreamSend Script
8 StreamEnabled StreamEnabled sendForm genSendForm Script
9 StreamEnabled StreamEnabled recNonStream UCI.notify(DSi+1)

10 StreamEnabled StreamEnabled recForm UCI.notify(DSi+1)
11 StreamEnabled Ready disableStream # streams == 1 genCloseStream Script
12 StreamEnabled Ready disableStreamRec # streams == 1 genCloseStreamRec Script

UCI.notify(DSi+1)
13 Ready Ready sendNonStream genNonStreamSend Script
14 Ready Ready sendForm genSendForm Script
15 Ready Ready recNonStream UCI.notify(DSi+1)
16 Ready Ready recForm UCI.notify(DSi+1)
17 Ready Final terminate

executed and the second column the transitions executed in
the (re)negotiation and media transfer state machines. The
table is divided into three sections, the initial negotiation
between the participants (Dr. Burke (burke23), Ms. Smith
(smith48) and Dr. Monteiro (monteiro41)), the media trans-
fer between the participants and the final negotiation to close
the communication. The media transfer section of Table III
has two entries initiated by Dr. Burke corresponding to the
two data schemas shown in Figure 6 parts (b) and (c).

The first row in Table III, under the label Negotiation,
shows the actions taken by the SE on Dr. Burke’s
CVM after it receives the initial control schema
from the UCI. These actions involve creating the
negotiation state machine (transition 0 triggered by
event initiateNeg) followed by establishment
of the connection to start negotiation (transition 1
triggered by event initiateReNeg). The control script
generated includes the createConnection("C1")
and addParticipant("C1", "smith48,
monteiro41") commands that informs the UCM
to create a connection with id "C1" and add the
participants with ids "smith48" and "monteiro41"
to the connection. The entry “NA” in the table states that
no control script is generated as a result of the transitions
shown.

C. Limitations of Approach

The approach presented in the paper has several limi-
tations with respect to the completeness of the semantics.
These limitations include (1) the incomplete semantics for
SE Controller, (2) details of the semantics related to the
token used in negotiation, and (3) the details on updating the

control schema. The SE Controller is the process that creates
and destroys the negotiation and media transfer processes
and requires the use of a priority queue to handle the request
from the UCI and the SE events received from the UCM.
In addition, the semantics will have to specify concurrency
and synchronization details. We are currently still validating
aspects of the SE in the CVM prototype and are currently
working to define the correct semantics. We have defined the
semantics for the operations related to negotiation token and
the different updates that can be performed on the control
script, however due to space restriction we could not provide
the details in the paper.

The current version of CML can model various commu-
nication scenarios that involve multiple human participants.
These include: a single connection with multiple partici-
pants, as shown in Figure 6, and multiple connections each
with multiple participants. The current version of CML can-
not model communication scenarios that involve explicitly
defined workflows. G-CML suffers from the same problem
associated with most graphical modeling languages, that is,
there is reduced readability with models that contain a large
number of nodes. The limitation with respect to scalability is
based mainly on the services provided to the NCB from the
communication frameworks such as Skype [7] or Smack [8].
However, this limitation is somewhat ameliorated since the
NCB uses self-management principles to self-configure the
communication frameworks based on user-defined policies
[13].

V. RELATED WORK

Defining operational semantics in the context of modeling
languages like UML is not new. Butler et al [14] used
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a similar approach to formalize stAC (a business process
modeling language similar to BPEL4WS) by defining the
system in terms of transition rules between configurations,
and using activities as transition labels in configuration
(state) transitions. However, their semantics are based on
a semantic language (a variant of stAC) for which every
language construct is mapped to a transition rule. The
declarative nature of CML requires our semantics to include
a set of schema analysis algorithms whose output triggers
state transitions in the labeled transition systems (schema
negotiation and media transfer state machines).

van Eijk et al. [15] studied the operational semantics
of agent communication languages in multi-agent systems.
These semantics are defined by transition rules that describe
its operational behavior, giving rise to an abstract machine
that interprets the language. However, the authors focus on
defining a formal transitional system as a theoretical basis
for their language, providing no details regarding the abstract
machine used to interpret the language. Our operational se-
mantics blend the formal definition with detailed algorithms
and state machines in a practical manner, thus facilitating
rapid model realization that conforms to specified behaviors.

Singh et. al [16] proposed a new ordering semantics
for communication middleware and protocols allowing the
application to provide a specification, which would be del-
egated and enforced by the underlying multicast layer. Our
work has similar motivations, except that we have provided
full executable semantics for the communication application
specified in CML, not just a particular feature of it, say
message ordering.

In the work by Deng et al. [4] the authors describe the
syntax for two versions of CML and the detailed architecture
of the CVM. The paper also describes a prototype that was
developed to show the feasibility and practicality of the
CVM technology. In this paper we provide additional details
for the synthesis of CML models resulting in the generation
of control scripts that are used by the UCM to realize a
communication. These details include how the behavior of a
user-defined communication scenario is determined based on
a sequence of CML models created by the user. During the
process of defining the semantics for the synthesis process
we extended two major aspects of the CVM technology
model. These extensions include (1) the syntax of CML
to explicitly define the data schema, and (2) additional
commands in the control script to support the data schema
language extensions.

VI. CONCLUSION

In this paper, we define the semantics for a commu-
nication model (communication schema) written using a
declarative communication modeling language (CML). The
semantics for this model consist of schema synthesis and
negotiation/communication management. An algorithm for
CML schema analysis and state machines supporting CML
operational semantics are provided. Our future work will
focus on extending CML to include user defined workflows
and the semantics to support such models.
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Table III
CONTROL SCRIPTS GENERATED BY SE FOR THE HEALTHCARE SCENARIO.

SE user’s id Trans. Control Scripts
Negotiation:
burke23 0, 1 createConnection(“C1”); addParticipant(“CS1”, “smith48, monteiro41”)
burke23 2 sendSchema(“C1”,“burke23”,“smith48, monteiro41”, “CS1, null”)
smith48 0, 14, 18 createConnection(“C1”); addParticipant(“C1”, “burke23, monteiro41”)
smith48 19 sendSchema(“C1”,“smith48”,“burke23”, “CS1, null”)
monteiro41 0, 14, 18 createConnection(“C1”); addParticipant(“C1”, “burke23, smith48”)
monteiro41 19 sendSchema(“C1”,“monteiro41”,“burke23”, “CS1, null”)
burke23 3, 4, 5 sendSchema(“C1”,“burke23”,“smith48, monteiro41”, “CS2, null”)
smith48 20, 5 NA
monteiro41 20, 5 NA
Media Transfer:
burke23 0, 1 enableInitiatorMedia(“C1”, “LiveAV”); enableRecieverMedia(“C1”, “LiveAV”);

sendSchema(“C1”,“burke23 ”,“smith48, monteiro41”, “CS2, DS1”)
smith48 0, 1 enableRecieverMedia(“C1”, “LiveAV”); enableInitiatorMedia(“C1”, “LiveAV”)
monteiro41 0, 1 enableRecieverMedia(“C1”, “LiveAV”); enableInitiatorMedia(“C1”, “LiveAV”)
burke23 8 sendForm(“C1”, “Patient-Jane”, “D:Jane/RecSum-Jane.txt”);

sendForm(“C1”, “Patient-Jane”, “D:Jane/heartEcho-Jane.mpg”);
sendSchema(“C1”,“burke23 ”,“smith48, monteiro41”, “CS2, DS2”)

smith48 10 NA
monteiro41 10 NA
Negotiation:
burke23 23, 27 sendSchema(“C1”,“burke23”,“smith48, monteiro41”, “CS3, null”); closeConnection(“C1”)
smith48 24 removeParticipant(“C1”,“burke23”)
monteiro41 24 removeParticipant(“C1”,“burke23”)
smith48 23, 27 sendSchema(“C1”,“smith48”,“monteiro41”, “CS4, null”); closeConnection(“C1”)
monteiro41 25, 26 removeParticipant(“C1”,“smith48”); closeConnection(“C1”)
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