
An Autonomic Framework for User-Centric Communication

Services

Andrew A. Allen, Yali Wu and Peter J. Clarke
School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

email: {aalle004, ywu001, clarkep}@cis.fiu.edu

Tariq M. King
Department of Computer Science
North Dakota State University

Fargo, ND 58105, USA
email: tariq.king@ndsu.edu

Yi Deng
College of Computing and Informatics

UNC-Charlotte
Charlotte, NC 28223, USA
email: Yi.Deng@uncc.edu

Abstract

The diversity of communication media now
available on IP networks presents opportu-
nities to create elaborate collaborative com-
munication applications. However, develop-
ing collaborative communication applications
can be challenging when using the traditional
stovepiped development approach with lengthy
development cycle as well as limited util-
ity. One proposed solution to this prob-
lem is the Communication Virtual Machine
(CVM). CVM uses a user-centric communica-
tion (UCC) approach to reduce the complexity
while offering operating simplicity to develop-
ers and users of collaborative communication
services. CVM currently utilizes only one com-
munication framework which limits the num-
ber, quality and types of services available.

We extend the CVM to support multi-
ple communication frameworks with a policy-
driven approach for the selection and configu-
ration of communication services. Users define
policies that, through automation, can main-
tain high level goals by influencing the selec-
tion and configuration decisions. In this paper

Copyright c© 2009 Andrew A. Allen, Yali Wu, Peter
J. Clarke, Tariq M. King and Yi Deng. Permission to
copy is hereby granted provided the original copyright
notice is reproduced in copies made.

we provide a policy definition for UCC and a
technique to evaluate these UCC policies. We
also present our autonomic framework for UCC
and experimental evaluation of the implemen-
tation.

1 Introduction

Electronic communication services, such as in-
stant messaging (IM) and Voice over IP (VoIP),
that were previously seen as trivial and re-
stricted in businesses are now viewed as re-
quired services. The diversity of communi-
cation media now available on IP networks
presents opportunities to create elaborate col-
laborative communication applications. Vari-
ous vendors [7, 18, 9] provide a variety of com-
munication tools and communication services
for creating synergistic collaborative communi-
cation applications. For example, Skype [18]
and GoogleTalk [7], which are commercial-off-
the-shelf (COTS) communication APIs, have
been made available by their respective com-
panies and support the development of more
sophisticated communication services by third
parties.

However, developing collaborative commu-
nication applications can be challenging, es-
pecially when using the traditional stovepipe

development approach. Traditional stovepipe
development approaches result in rigid tech-
nology, lengthy and costly development cy-
cles, as well as limited utility. Additionally,
users of these services have to manage and
adapt their communication in line with differ-
ences in services across devices, networks and
media. Administrators tasked with managing
and, where possible, minimizing the costs as-
sociated with the resource have to ensure that
the resource usage remains consistent with the
business goals and changing business model.

One proposed approach to this challenge is
user-centric communication which aims to re-
duce the complexity and offer operating sim-
plicity to users [13]. The Communication Vir-
tual Machine (CVM) technology, proposed by
Deng et al. [5], exemplifies this concept with
a model-driven approach to realizing commu-
nication services. Domain experts and novice
users in domains such as healthcare, disaster
management and scientific collaboration are
presented with a simplified yet powerful way
to quickly create and realize communication
intensive collaboration. The user’s commu-
nication needs are specified as a model writ-
ten in the Communication Modeling Language
(CML) [4] and executed on the CVM plat-
form. The CVM includes the Network Com-
munication Broker (NCB), the layer responsi-
ble for providing a network-independent API
to the upper layers of CVM. However, the cur-
rent CVM depends on a single communication
framework and our preliminary studies [2, 3]
show that a single communication framework
limits the number, quality and types of services
available.

The NCB layer of the CVM has been ex-
tended to support self-* properties and is the
main area of focus in this paper. The extension
provides a policy-driven approach for allocating
and self-configuring communication resources.
This includes interfacing multiple communica-
tion frameworks and policy-based methodolo-
gies for selecting the most appropriate services
as requested by the user’s communication mod-
els. Models defined by users, domain experts
and novice users, are executed by CVM and
provide services that are guided by user-defined
policies. The major contributions of this paper
are as follows:

1. Development of a policy definition for
user-centric communications (UCC).

2. Development of a technique to evaluate
UCC policies.

3. Design of an autonomic framework to sup-
port UCC.

4. Experimental evaluation of the autonomic
framework.

The rest of this paper is organized as follows,
Section 2 provides background on supporting
technologies and concepts. User-centric com-
munication polices are discussed in Section 4
with our autonomic framework presented in
Section 5. Experimental evaluations are dis-
cussed in Section 6 with related work in Section
7 and we conclude in Section 8.

2 Background

In this section we introduce user-centric com-
munication and the CVM technology. We also
provide an overview of autonomic computing.

2.1 User-Centric Communication

The convergence of various multimedia commu-
nications that includes voice, video and data
presents many opportunities for enabling uni-
fied communication. There are however chal-
lenges presented by this model of communica-
tion. One such challenge is that with each new
communication channel and application, a new
way of contacting others is introduced. This
increases the complexity for the user who is
tasked with managing and adapting the com-
munication. Complexity can hinder rather
than enhance communication [13] and research
is under way in academia and industry to find
solutions to such challenges of unified commu-
nication.

The user-centric approach [13, 20] is one such
research direction. This solution aims to reduce
the complexity and offer operating simplicity
[13] to users of these unified communication
services. To be user-centric requires knowledge
of the actual ’context’ of a user. A context de-
fines a certain relationship of a human being to
a particular number of objects of its communi-
cation space at a fixed moment of time [20].

2

The user-centric communications (UCC) ap-
proach is therefore about matching the commu-
nication resources with the individual’s needs
at a particular point in time, and adapting ac-
cordingly, thereby reducing the complexity to
the user.

2.2 Autonomic Computing

Autonomic computing (AC) [8, 10] refers to
computing systems characterized by one or
more of the self-management behaviors which
include: self-configuration, self-optimization,
self-protection, and self-healing. This self-
management is achieved by automating low-
level tasks while allowing administrators to
specify the goals of the system as high-level
policies.

The architecture of an AC system is gen-
erally composed of managed resources, touch-
points, autonomic managers, and knowledge
sources. Managed resources are entities for
which self-management services are desired,
with touchpoints being the manageability in-
terfaces used to automate low-level manage-
ment tasks for these entities. Autonomic man-
agers (AM) provide the high level manage-
ment and can be categorized as either Touch-
point AMs [8], that directly manage resources
through their touchpoint interfaces or Orches-
trating AMs [8], that manage pools of resources
or optimize the Touchpoint AMs for individual
resources. Knowledge sources implement reg-
istries or repositories that can be used to ex-
tend the capabilities of AMs.

A key concept in autonomic computing is the
use of closed control loops for self-management.
The closed control loops are generally imple-
mented as monitor, analyze, plan, and execute
(MAPE) functions [8]. The monitor function
collects state information from the managed re-
source and correlates them into symptoms for
analysis. If analysis determines that a change
is needed, a change request is generated and a
change plan is formulated for execution on the
managed resource.

2.3 CVM Technology

CVM technology supports the model creation
and realization of user-centric communication

User / Application (local)

User Comm. Interface
(UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker
(NCB)

Communication Networks

CVM

User
Comm.

Comm.
Logic

Comm.
Data

Schema
Negotiation

Legend
Control and Data Flow Virtual Communication

User / Application (remote)

User Comm. Interface
(UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker
(NCB)

Communication Networks

CVM

Figure 1: Layered architecture of the CVM.

services. We present a description of this tech-
nology.

2.3.1 Communication Virtual Machine

Deng et al. [5] developed the notion of
the Communication Virtual Machine (CVM),
which enables the realization of models defined
using a Communication Modeling Language1

(CML). CVM has a layered architecture and
lies between the communication network and
the user (or application). Figure 1 shows the
layered architecture of the CVM. The key com-
ponents of the CVM are:

1. User Communication Interface (UCI),
provides a modeling environment for users
to specify their communication require-
ments using a Communication Modeling
Language (CML). CML can be used to
describe a user communication schema or
schema instance, analogous to an object-
oriented class and object;

2. Synthesis Engine (SE), contains a set of
algorithms responsible for (1) automati-
cally synthesizing the user schema instance
to an executable communication control
script, and (2) negotiating the schema in-
stances with other participants in the com-
munication;

1http://www.cis.fiu.edu/cml/

3

3. User-centric Communication Middleware
(UCM), executes the communication con-
trol script and coordinates the delivery of
communication services to users, indepen-
dent of the underlying network configura-
tion;

4. Network Communication Broker (NCB),
provides a network independent API to
the UCM that masks the heterogeneity
and complexities of the underlying net-
work for the realization of the communi-
cation services.

2.3.2 Communication Frameworks

Instant messaging (IM) applications were orig-
inally devised as a way for users to hold real-
time conversations on-line, however they have
been expanded to include file-sharing, game
play, streaming audio and video, and sending
text messages to cell phones. To foster further
growth, many companies have provided API’s
to facilitate third party add-ons and exten-
sions of their product’s communication frame-
work which essentially become building blocks
or communication frameworks for more elab-
orate communication applications. The NCB
architecture supports the integration of com-
munication frameworks, such as Skype [18] and
Smack [9], providing an extensible set of com-
munication services for the CVM.

3 Overview of NCB

Network communication broker (NCB) is the
lowest layer of the CVM architecture. NCB uti-
lizes communication frameworks such as Skype
[18], Smack [9] and its own NCBNative [2] to
provide collaborative communication services.
A policy authoring tool [3] is used to create
user-defined policies, these policies are stored
in the policy repository of NCB. Figure 2 shows
the flow of control during the normal operation
of the NCB. A user’s communication model
would be accepted and transformed by the up-
per layers of the CVM into a series of requests
for the NCB as in step 1 in Figure 2.

The requests are inserted into a priority
queue where the highest priority request is eval-
uated against stored policies and the current
operating environment state (steps 2 and 3 of

Figure 2). The result of the evaluation is an
identified communication framework that sat-
isfies the user’s request and does not violate
the active policies. If the evaluation process
returns a new framework for the connection,
the TouchPoint Manager (TPM) issued com-
mands to setup the new framework for use and
updates the framework-to-connection mapping
table, step 4, 5 and 6 of Figure 2. Section 4
provides details on the policy definition and its
interpretation.

The evaluation is one sub-component of the
Orchestration Autonomic Manager (OAM),
which is also responsible for usage synchroniza-
tion of the communication frameworks. OAM
blocks the Communication Services Manager
(CSM) while these reconfiguration steps are in
progress, then issues the connection commands
(step 7 of Figure 2) to the CSM. The CSM looks
up the framework for the connection in the
framework-to-connection mapping table, step
8, and executes the command on the specific
framework (step 9 of Figure 2).

Any resulting events or exceptions are passed
to the NCB Manager, step 10 of Figure 2. Any
out-of-band or reactive events that cannot be
handled by the TPM are encapsulated and for-
warded to the OAM. The OAM processes this
event and directs the TPM appropriately. This
effectively provides a stacked approach for the
autonomic design with the OAM performing
the role of manager for the TPM. The details
of this approach are provided in Section 5.

4 UCC Policies

The interfacing of multiple communication
frameworks expands the available communica-
tion services. However, utilizing this method in
isolation raises the complexity for users and de-
velopers of CVM who will now have to become
aware of each communication framework’s ser-
vice listings and limitations. This would be
contrary to one of the key concepts of CVM,
which is to reduce the complexity associated
with the development of collaborative commu-
nication applications. We therefore investi-
gated methodologies for influencing service se-
lection and automating configuration. After
analysis of the user-centric communication do-

4

NCB Manager Queue Evaluation
Communication

Frameworks
Shared

Knowledge

Communication

Manager

Touchpoint AC

Manager

Prioitized

request

2 3Evaluate against

 policies

4 Issue AC

re-configuration
5Prepare framework

for use

6Update

knowledge

7 Issue connection

command
8Get connection

to framework

mapping

9 Enable

communication

10 Communication

Events and Exception

1

11

Response

User

request

Reactive Events

OAM

Figure 2: NCB Control Flow Diagram.

main [3], a policy-driven approach was identi-
fied as the best fit.

Policies are rules that define the choices in
the behavior of a system [16]. Separating the
rules from the implementation facilitates dy-
namic modification of these rules, yielding flex-
ibility to change the management strategy of
the system and hence modify the behavior of a
system without changing its underlying imple-
mentation [19]. In this section, we define user-
centric communication policies and present a
structural design for representing these poli-
cies.

4.1 Policy Definition

To fully realize the vision of autonomic com-
puting [10] there is a need to express high level
business goals for the managed systems. Poli-
cies are one way to express these goals. A pol-
icy is a set of considerations designed to guide
decisions on courses of action, as such policies
are rules that define the choices in the behav-
ior of a system [16]. Agrawal et. al [1] de-
fines a system’s behavior to be ”a continuous
ordered set of states where the order is imposed
by time”. Each state can be viewed as a map-
ping of some values Vi . . . Vn to the set of sys-
tem attributes AS .

Let B(S) be the set of all possible behaviors
that the system S can exhibit.

B(S) = {{Vi, ..., Vn} 7→ A0
S , ..., {Vj , ..., Vm} 7→ At

S}

There should exist some set of constraints C

such that when C is applied to B(S), it maps
to a subset of desired behavior Bdesired(S) ⊂
B(S).
Then

g : (C, B(S))→ Bdesired(S)

We define policy P as the function g(x).

P (C, B(S))→ Bdesired(S)

Therefore

P (C, B(S)) ⊂ B(S)

Where policy P characterizes a subset of the
possible behaviors B(S) of a target system S
that satisfies a set of constraints C; that is, it
defines a subset of B(S) of acceptable behaviors
for S [1]. Policies can be defined using only
a small number of attributes of system state
and do not require the determination of the
complete state a priori [1].

We define constraint C as a 4-tuple
(CO, CN , CV , CD) where:

• CO: narrows the scope of the constraint to
identify subcomponent of S to which the
constraint is applied
• CN : represents the condition(s) under

which the constraint is triggered
• CV : facilitates the ranking of multiple

applicable constraints based on some ex-
pected business value or utility
• CD: associates a condition CN with some

action that achieves some desired behavior

5

We extended these elements based on the re-
sults of domain analysis of the collaborative
communication domain [2, 3]. Where:

<csmPolicy policyName="selectComm_Video_01">

 <scope>

 <service>Communication Object</service>

 <active>true</active>

 </scope>

 <condition>

 <feature>Video</feature>

 <operation>request</operation>

 <literal></literal>

 </condition>

 <businessValue>

 <businessGroup>general</businessGroup>

 <value>96</value>
 </businessValue>

 <decision>

 <param>Enabled</param>

 <operation>equalTo</operation>

 <value>conID.enabled</value>

 </decision>

</csmPolicy>

Figure 3: XML representation for user-centric
communication policy.

• Scope identifies the applicable communica-
tion component (the subject of the com-
munication) using the service attribute. A
second attribute indicates the status of the
policy as being active or not.
• Condition represents the trigger for the ap-

plication of the policy represented by (1)
medium - the carrier of the intended in-
formation to be communicated, (2) oper-
ation - the action to be performed on the
proposed medium and optionally (3) some
value provided for comparison.
• Business value facilitates a ranking of con-

flicting polices. It is represented by (1)
the business group attribute which pro-
vides a way to associate policies, and (2) a
numeric value that represents the policy’s
priority in the group.
• Decision indicates the policy’s desired out-

come or expected behavior of the commu-
nication. It is expressed as triple (con-
sisting of parameter, operation and value)
that specify the criteria that the commu-
nication must satisfy.

Figure 3 is an example of a user-defined pol-
icy that guides the establishment of video con-
ferences, the elements are interpreted as:

• Scope: selection of Communication Object
• Condition: request for video
• Business value: general group with priority

96
• Decision: select communication framework

whose medium supports at least the con-
nection’s users count

We provide details on the evaluation of this ex-
ample in Section 4.2.

4.2 Policy Interpretation

While policies describe the ‘what’, policy in-
terpretation represents the ‘how’ that ensures
stated goals in the policies are maintained. We
provide a discussion of our lightweight policy
evaluation mechanism used in satisfying com-
munication needs.

Policy selection: Policies are stored as Exten-
sible Markup Language (XML) representations
in the policy repository. Policies are deemed
relevant if the request attributes match the
policy values for service, feature or operation.
When relevant policies are looked up and re-
trieved from the repository, an equivalent ob-
ject representation is built with all the tags
and values extracted and stored as object at-
tributes.

Using set reduction in framework selec-
tion: For a set of relevant policies, they are
processed in the order of their business val-
ues. Since UCC policies define how a user’s
request is mapped to an underlying communi-
cation framework, it would be straightforward
to go through all the currently available frame-
works and use the policy to guide which one
satisfies the request. This is in fact a set reduc-
tion technique based on the naive set theory
for intersection [6]: start with a full set, and
gradually reduces it until all policies are pro-
cessed. The evaluator produces a set of candi-
date frameworks as its output for each request.

Evaluation details: Besides the policy, ad-
ditional input to the policy evaluation process
is the currently available set of communication
frameworks (the environment) and the request
information from the user. We will use Figure
3 as a referring example. Details of the policy

6

Communication

Services Manager

Orchestration

Autonomic Manager

NCBNative

NCB API

Skype Smack Android

New

Communication

Framework

Management Interface

policies

events / exceptions

Comms Interface

Touchpoint

Autonomic Manager

Knowledge

Source

NCB Manager

Call Queue

API Calls

Reactive Calls

Get State

AC

Commands

CSM

Commands

Policy

Authoring
Communication

Requests

Figure 4: NCB Autonomic Architecture.

evaluation works as follows: The scope com-
ponent of each policy object is used to identify
the interested object, in the case of the example
of Figure 3 it is the selection of a communica-
tion object (communication framework). The
condition component determines the applica-
bility of the policy for the current request, in
this case this policy is valid only for video se-
lection. The decision component is responsible
for stating the desired goal of the policy, for
our referring example the desired outcome is a
communication framework that supports video.

In our video conferencing example in Figure
3 the following occurs: (1) the decision compo-
nent of the policy is extracted; (2) the number
of participants in the conference is extracted
as well as the media desired; (3) the frame-
work information instantiated for each of the
currently available communication frameworks.
This includes the maximum number of partici-
pants supported by each communication frame-
work and the supported media capabilities; and
(4) a comparison is made between the request
with the conferencing capabilities of each avail-
able framework based on the operators speci-
fied in the policies, such as ”greaterThan” or
”equalTo”. If the comparison shows that a
communication framework cannot satisfy the
goal as stated by the decision component, then
this communication framework will be removed
from the set. Each policy will rule out the set
of frameworks that do not satisfy that policy,

and the final resulting set would be the can-
didate set of communication frameworks that
satisfy all communication needs for the user.
If the set contains more than one members, a
member will be chosen randomly.

5 UCC Autonomic Frame-
work

A high level view of the architectural approach
is presented in this section. We also highlight
some of the significant components with a de-
tailed design.

5.1 Architecture

The introduction of autonomic behavior in the
NCB is a first step towards enabling an auto-
nomic CVM through a bottom up approach.
While our current focus is on the extension of
the NCB to include self-configuration behav-
ior, we perceive that there will be significant
benefits for user-centric communication from
the addition of other self-management behavior
such as self-optimization and self-healing. Ad-
ditionally, the list of self-management proper-
ties continues to expand as researchers identify
new behavior [11] for systems that will either
directly or indirectly support the autonomic
concepts. Considerations such as those just
outlined reinforced the need for an extensible
design vertically (to add other self-* behavior)

7

edu.fiu.strg.ACSTF.manager.mape

+doFunction()

AbstractFunction

‐knowledge : KnowledgeInterface

‐suspended : Boolean

Touchpoint

Monitor

‐sensorObject : Object

‐sensorMethod : Method

+generateChangeRequest()

Analyzer

+generateChangePlan()

Planner

+effectorObject() : Object

Executer

+Thread(in threadGroup, in name)

Thread <<java.lang>>

+startAll() : void

+joinAll() : void

+hasAllSuspended() : Boolean

MAPEGroup

Touchpoint

+ThreadGroup(in name)

ThreadGroup <<java.lang>>

+loadPolicy() : void

+manage() : void

+suspend() : void

+stop() : void

GenericManager

Touchpoint

1

1

1 1

1 1

1

1

1

1

«interface»

KnowledgeInterface

Figure 5: Reusable Autonomic Design.

and horizontally (to extend self-management to
the upper layers of CVM).

Our approach for supporting vertical exten-
sibility is by laterally stacking components that
share a managed resource. Liu et. al [15]
specifies an autonomic component’s interface
as three ports: functional - traditional pro-
gram inputs and outputs; control - sensors
and effectors; and operational - rule injection
and rule management. We utilize this con-
cept in our design. At the top right of Fig-
ure 4 is the Communication Services Manager
(CSM) which utilizes the functional port of the
communication frameworks (bottom of Figure
4) to provide communication services such as
creating a connection or enabling a particular
medium. The communication frameworks also
include a control port, indicated as manage-
ment interface shown above the framework in
Figure 4, which is used by the touchpoint au-
tonomic managers (TPM). TPM directly in-
teracts with the sensors and actuators of the
communication frameworks providing low-level
management to the resource.

It is acknowledged that conflicts can oc-
cur between standard application execution
and adaptive behavior [15]. For highly multi-
threaded and asynchronous systems such as
communication, coordination becomes even
more challenging. Our approach reduces the
potential for such conflicts through the use of
a high level coordinator which we refer to as
the orchestration autonomic manager (OAM).
The OAM (left in Figure 4) provides safe access
to the shared managed resources by monitoring
the states of the CSM and TPM components.

The OAM can delay sending commands to a
component as well as cause the component to
suspend pending actions while the other com-
pletes a non-concurrent task.

The OAM also has responsibility for evalu-
ating requests, retrieved from the call queue
(top left of Figure 4), with respect to stated
policies. The OAM is the main policy deci-
sion point in the NCB with requests triggering
the evaluation process. A request is one of two
forms, the first is a user’s explicit desire for ser-
vice such as ‘ video conference with Bob, Mary
and me’. The second form can be out-of-band
events that falls outside the scope of the TPM,
an example of such an event would be ‘Failure
in Skype framework’. The TPM detects the
failure but it would be the responsibility of the
OAM to identify all the connections that were
using this framework, select an alternative and
restore the state on the new framework. Ses-
sion creation and addition of parties lie in the
functional port so OAM will need to generate
the required commands for CSM to restore the
service for the connection. With the TPM es-
calating these events to the OAM, the OAM
therefore serves as a high level autonomic man-
ager.

5.2 Detailed Design

Figure 5 depicts the revision to King et al.’s
[12]’s Reusable Autonomic Manager design. As
with the original design, the MAPE function-
alities (Monitor, Analyzer, Planner and Exe-
cuter) are encapsulated in individual classes
with each class threaded for independence of

8

edu.fiu.cvm.ncb.cs

edu.fiu.cvm.ncb.tpm

edu.fiu.cvm.ncb.adpt

+setFeatureList()

+getFeatureList()

+setMapTable()

+getMapTable()

+...()

«interface»

KSInterface

+hasFailed()

+resetFramework()

+...()

«interface»

ACManagement

out NCBCall

«signal»

ACSignal

in NCBCall

«signal»

ACSignal

CommFWResource

CommTPManager

CommFWTouch

GenericManager

Touchpoint

CommFWTouch

1
*

SkypeAdapter NCBNativeSmackAdapter

NCBBridge

ComObjectMgr

csManager

PolicyEvalManager

OrchestrationManager
1

*

1
*

1

0..*

+createConnection()

+addParty()

+enableMedium()

+...()

«interface»

ComObject

Figure 6: NCB Detailed Design Diagram.

operation. Each thread can be individually
started, stopped, suspended or resumed giving
fine grained control of the loop. The revised
design includes a thread group, MAPEGroup
in the edu.fiu.strg.ACSTF.manager.mape pack-
age in Figure 5, which provides the mecha-
nisms to safely suspend and resume the MAPE
threads as a single unit for coarse grained con-
trol (recall our discussion in Section 5.1 where
the OAM may need to suspend MAPE activ-
ities). The controller class GenericManager,
see top right of Figure 5, coordinates the op-
erations and services as well as maintain the
knowledge source (KnowledgeInterface, bottom
right of Figure 5)used by the MAPE func-
tions. GenericManager, MAPEGroup and the
MAPE classes (through inheritance from Ab-
stractFunction, bottom left of Figure 5) are
parameterized with the template class, Touch-
point. Self-management will be carried out by
classes representing the Touchpoint template
class.

Figure 6 shows the core components of our
NCB Design. At the bottom left of Figure 6
is the package edu.fiu.cvm.tpm which contains
CommTPManager, our specialization of the
GenericManager. We parametrize CommTP-
Manger with a communication specific touch-
point, CommFWTouch, which includes moni-
tor methods such as checkFW - which iterates
through the set of frameworks, polling each
for error state; and execute methods such as
resetFramework - which reinstantiates a spe-
cific framework. Out-of-band events that can-
not be handled by the CommTPManager are
encapsulated and sent out asynchronously via

ACSignal, to be handled by the Orchestration-
Manager.

We show at the top right of Figure 5 the
package edu.fiu.cvm.cs which has the compo-
nents responsible for managing the commu-
nication services. The ComObject interface
defines the operations for the communication
framework such as createConnection - which
creates a new communication framework ses-
sion for a specific connection identifier and
addParty - which adds a new member to a com-
munication session. The ComObjectMgr main-
tains the set of available communication frame-
works, while the csManager handles the high
level coordination to effect the communication.

Package edu.fiu.cvm.ncb.adpt at bottom
right in Figure 5 includes the adapter classes
for the communication frameworks. For black
or gray box communication frameworks such as
Skype, the adapter classes function as managed
resource wrappers. Each adapter class imple-
ments the common sensor, effector and com-
munication methods of the NCBBridge inter-
face. The NCBBridge is an amalgamation of
the functional and control ports defined by the
ComObject interface of the edu.fiu.cvm.ncb.cs
package and the ACManagement interface of
the edu.cvm.ncb.tpm package.

The OrchestrationManager, shown at top
center of Figure 6, coordinates autonomic
(TPM) and non-autonomic (CSM) components
use of the shared resources. Additionally, the
use of the knowledge by the two components
adds to the safeness. CSM uses the Map-
pingTable (getMappingTable method of the
KSInterface, top left of Figure 6) as read-only

9

while the TPM is responsible for updating the
table using locks when writing to the table.
The PolicyEvalManager, below the Orchestra-
tionManager in Figure 6, is the high level pol-
icy decision point.

6 Evaluation

We have implemented a prototype that incor-
porates the designs discussed in this paper.
The prototype was evaluated with respect to
its efficiency compared to previous versions of
CVM and the scalability of the selection mech-
anism. The policy shown in Figure 3 was used
in both experiments. In this section we out-
line our evaluation methodology and present
the experimental results.

6.1 Experiment Set 1

We used three version of the NCB prototype
during the experimental runs, where each run
was ten iterations of the specific scenario. Two
versions included the initial developed proto-
type NCB without self-configuring behavior,
one version was configured to only use the
Skype version 3.4 communication framework
API and the other was configured to only use
the Smack version 3.0.4 communication frame-
work API. The third version was the new pro-
totype of the autonomic NCB with Skype 3.4
API and Smack 3.0.4 API as the supporting
communication frameworks. The three scenar-
ios (2 way, 3 way, 4 way) measured the time to
setup a user’ request for an initial audio confer-
ence and then a switch to video conferencing.
A common driver application was used to sim-
ulate CVM type requests.

Figure 7 shows the average for each scenario
in the experiment. The cluster of bars repre-
sents the performance of the non-autonomic,
Skype only and Smack only variants, and the
autonomic variant of the NCB. The bar repre-
senting the non-autonomic includes the times
for starting the Skype version of NCB initially,
stopping the Skype version of NCB and start-
ing the Smack version of NCB if necessary. The
x-axis shows the three scenarios (2 way, 3 way
and 4 way) while the y-axis shows the time to
complete the switch and setup of a video con-
ference. The non-autonomic implementations

0

20

40

60

80

100

120

140

2 way 3 way 4 way

Audio to Video Conference

S
e
t-

u
p

 T
im

e
 (

s
e
c
o

n
d

s
)

without AC Framework

with AC Framework

Figure 7: Audio to Video Conferencing Set-up
Times.

of NCB performed better than the autonomic
variant for two way audio conferencing to video
conferencing. From our analysis, this was due
to Skype’s support for two way video confer-
encing. Therefore there was never a need to
switch frameworks. The autonomic version of
NCB however had the additional overhead of
the AC framework threads.

As shown in Figure 7, as the number of par-
ticipants increase the autonomic NCB scales
better than the non-autonomic NCB. Skype
video conferencing support is limited to two
way, as such the Skype implementation of NCB
required a switch to the Smack implementation
of NCB. For single framework implementation
this requires conference disconnection, shut-
down and a restart with the new framework
implementation. We averaged the time taken
to manually stop and start an implementation
to compensate for differences in the speed of
users in the experiments. We also noted from
the data that the AC Framework accounted for
noticeably less of the overall execution time as
the conference’s participant count increased.

6.2 Experimental Set 2

We evaluated the technique for selecting the
candidate communication framework using the
new NCB prototype. We measured the elapsed
time from receiving a user’s request to the re-
turning of a candidate communication frame-
work. Varying numbers of communication
frameworks were included in the pool for se-
lection during the experimental runs and each
run was ten iterations of a specific pool size.
The experimental runs for each pool size was

10

0.3

0.4

0.5

0.6

Ti
m

e
to

 S
el

ec
t

C
an

d
id

at
e

F
ra

m
ew

o
rk

(s

ec
o

n
d

s)

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e
to

 S
el

ec
t

C
an

d
id

at
e

F
ra

m
ew

o
rk

(s

ec
o

n
d

s)

Number of Communication Frameworks

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e
to

 S
el

ec
t

C
an

d
id

at
e

F
ra

m
ew

o
rk

(s

ec
o

n
d

s)

Number of Communication Frameworks

Figure 8: Average Times to Select Candidate Communication Framework.

then averaged and tabulated. We also used a
common driver application to simulate CVM
type requests.

The averages for the pool sizes ranging from
2 to 16 are shown in Figure 8. The graph repre-
sents the average time of the selection process
with respect to the number of communication
frameworks available. The x-axis shows the
number of communication frameworks avail-
able at the start of the selection process while
the y-axis shows the time taken to complete
the policy evaluation and return a candidate
communication framework. The graph shows a
non linear increase in the selection times with
respect to the increase in the communication
framework pool. This was expected since on
average a reduction in the set of communication
frameworks occurs with each attribute evalu-
ated. We note however that a request that can
be satisfied by all communication frameworks
in the set may not exhibit this behavior.

6.3 Discussion

Our prototype of the NCB is an initial proof of
concept for the introduction of extensible ser-
vices to the CVM. The prototype NCB cur-
rently includes three communication frame-
works, Skype, Smack and NCBNative. For ex-
periment 2, additional communication frame-
works were created as stubs to support the sim-
ulation. This however does not reflect a limi-
tation of the prototype as additional commu-
nication frameworks can be interfaced in the

future. The number of active communication
frameworks will be dependent on the limitation
of the specific communication device.

Tools for performance evaluation generally
do not introduce significant overhead to the
monitored environment. For real-time systems
this tend not to be the case as the sampling pe-
riod can influence the application performance.
In our evaluation process, Eclipse Test and Per-
formance Tools Platform was used for moni-
toring and profiling the prototype. This in-
troduced additional memory and computation
overhead which introduced delays in the par-
ticipants negotiation process. We compensated
for this overhead by reducing the sampling pe-
riod and focused the profiling and monitoring
based on the criteria of the current experiment.

7 Related Work

In [17], a framework for dynamic component
configuration and reconfiguration based on Mi-
crosoft.NET is implemented and evaluated.
Their work is similar to ours in that an XML-
based configuration description language is de-
signed and used to instantiate the component,
or generate reconfiguration actions such the ad-
dition, removal or modification of a component,
if necessary. However, their reconfiguration al-
gorithm, once chosen, remains fixed at run-
time while our design is inherently more flex-
ible since reconfiguration algorithms could be
wrapped as internal policies.

11

Lewis et al. in [14] present an approach for
the management of user centric adaptive ser-
vices. This work shares some similar traits with
our autonomic framework in its adaptive ser-
vice composition and policy based management
of adaptive system behavior. However, a cen-
tralized system is used to compose the services
needed. Our approach is based on a peer to
peer model, with the flexibility to change this
model.

King et. al [12] present a reusable object-
oriented design for developing self-testable au-
tonomic software. Their design provides a
generic manager that can be instantiated to
provide both autonomic and testing services
based on high-level policies. King et. al [12]
apply their design to a small autonomic proto-
type simulation. Our approach borrows from
the manager design in [12]. However, due to
the high safety requirements of the NCB, we
extended the work in [12] by incorporating ad-
ditional mechanisms for suspending and resum-
ing the generic manager. Furthermore, our au-
tonomic CVM design applies the generic man-
ager design to the implementation of a real au-
tonomic system rather than a simulation.

An initial idea for self-configuring user-
centric communication services was described
in [2] and further refined in [3] with the con-
cept of policy-driven self-configuration. Con-
ceptual designs for the architecture were pre-
sented along with a policy authoring tool for
UCC. We extend this work with an architecture
and detailed designs for the autonomic func-
tionalities in NCB through the use of our auto-
nomic framework. Additionally, we provided a
formal definition for UCC policies with a tech-
nique for evaluating the policies as well as ex-
perimental evaluations of the implementation.

8 Conclusion

In this paper we presented an extension of
the NCB that supports interfacing of multiple
communication frameworks and policy-driven
selection of communication services. We de-
fined user-centric communication policies and
outlined our technique for the evaluation of
the user-centric communication policies. De-
tails of the design of our autonomic framework

were discussed and evaluations of the auto-
nomic framework presented. We plan in the fu-
ture to further extent the NCB to include self-
healing properties to provide recovery options
for a collaborative communication session. An
extended version of this paper will be prepared,
with more exhaustive experiments that will in-
clude analysis of the policy definition process
as well as fault injection for analysis of the self-
healing properties.

Acknowledgements

This work was supported in part by a Florida
International University Foundation grant and
the National Science Foundation under grant
HRD-0833093.

About the Authors

Andrew A. Allen is a PhD student at Florida
International University’s School of Computing
and Information Sciences. His areas of inter-
est are software engineering, autonomic com-
puting, model-driven development and collab-
orative communication. His Internet address is
aalle004@cis.fiu.edu.

Yali Wu is a PhD student at Florida In-
ternational University’s School of Comput-
ing and Information Sciences. Her areas
of interest are software engineering, model-
driven development, workflow and collabora-
tive communication. Her Internet address is
ywu001@cis.fiu.edu.

Peter J. Clarke is an Associate Professor
at Florida International University’s School of
Computing and Information Sciences. His ar-
eas of interest are software testing, model-
driven development and autonomic computing.
His Internet address is clarkep@cis.fiu.edu.

Tariq M. King is a Assistant Professor at
North Dakota State University’s Department
of Computer Science. His areas of interest are
software testing, autonomic computing, and
model-driven development. His Internet ad-
dress is tariq.king@ndsu.edu.

Yi Deng is a Professor and Dean at the Uni-
versity of North Carolina-Charolette’s College

12

of Computing and Informatics. His Internet
address is Yi.Deng@uncc.edu.

References

[1] Dakshi Agrawal, Seraphin Calo, Kang-
won Lee, Jorge Lobo, and Dinesh Verma.
Policy technologies for self-managing sys-
tems. IBM Press, 2008.

[2] Andrew A. Allen, Sean Leslie, Yali Wu,
Peter J. Clarke, and Ricardo Tirado.
Self-configuring user-centric communica-
tion services. In ICONS 2008, pages 253–
259. IEEE, April 2008.

[3] Paola Boettner, Mansi Gupta, Yali Wu,
and Andrew A. Allen. Towards Policy-
Driven Self-Configuration of User-Centric
Communication. In ACM Southeast Con-
ference 2009. ACM, April 2009.

[4] Peter J. Clarke, Vagelis Hristidis, Yingbo
Wang, Nagarajan Prabakar, and Yi Deng.
A declarative approach for specifying user-
centric communication. In CTS 2006,
pages 89–98. IEEE, 2006.

[5] Yi Deng, S. Masoud Sadjadi, Peter J.
Clarke, Vagelis Hristidis, Raju Ran-
gaswami, and Yingbo Wang. Cvm - a
communication virtual machine. J. Syst.
Softw., 81(10):1640–1662, 2008.

[6] Keith Devlin. The Joy of Sets: Fun-
damentals of Contemporary Set Theory.
Springer, NY, second edition, 1993.

[7] Google. Googletalk, Sept. 2007. http://
www.google.com/talk/.

[8] IBM Autonomic Computing Architecture
Team. An architectural blueprint for auto-
nomic computing. Technical report, IBM,
Hawthorne, NY, June 2006.

[9] Jive Software. Smack api, Nov. 2008.
http://www.igniterealtime.org/projects/
smack/.

[10] J.O. Kephart and D.M. Chess. The vi-
sion of autonomic computing. Computer,
36(1):41–52, Jan. 2003.

[11] Tariq M. King, Djuradj Babich, Jonatan
Alava, Ronald Stevens, and Peter J.
Clarke. Towards self-testing in autonomic
computing systems. In ISADS ’07, 2007.

[12] Tariq M. King, Alain E. Ramirez, Peter J.
Clarke, and Barbara Quinones-Morales. A
reusable object-oriented design to support
self-testable autonomic software. In SAC,
pages 1664–1669, 2008.

[13] Philippe Lasserre and Dennis Kan. User-
centric interactions beyond communica-
tions. Alcatel Telecommunications Re-
view, 1st Quarter, 2005.

[14] D. Lewis, T. O’Donnell, K. Feeney,
A. Brady, and V. Wade. Managing
user-centric adaptive services for pervasive
computing. In ICAC 2006, pages 248–255.
IEEE Computer Society, 2004.

[15] Hua Liu and Manish Parashar. A
programming system for autonomic self-
managing applications. In Manish
Parashar; Salim Hariri, editor, Autonomic
Computing: Concepts, Infrastructure, and
Applications, pages 211–235. CRC Press,
2006.

[16] M. J. Masullo and S. B. Calo. Policy man-
agement: An architecture and approach.
In IEEE First Int’l Workshop on Systems
Management, pages 13–26, April 1993.

[17] Andreas Rasche and Andreas Polze. Con-
figuration and dynamic reconfiguration of
component-based applications with mi-
crosoft .net. In IEEE Sixth Intn’l Sympo-
sium on Object-Oriented Real-Time Dis-
tributed Computing, page 164, 2003.

[18] Skype Limited. Skype developer zone,
Feb. 2007. https://developer.skype.com/.

[19] M. Sloman. Policy driven management
for distributed systems. Journal of Net-
work and Systems Management, 2:333–
360, 1994.

[20] Stefan Arbanowski Sven van der Meer,
Stephan Steglich. User-centric communi-
cations. In IEEE International Confer-
ence on Telecommunications, pages 425–
444. Special Sessions, 2001.

13

