
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Team 6: 
Ivan Olmos 
Luis Bautista 
Eduardo Flores 
Jandry Guerra 
 
 
Professor: Peter Clarke 
12/07/2010

CIS 4911 - Team 6 

CVM Mediator 
 
Deliverable 4 
 
 
 

 



 

i 
 

Copyright and Trademark Notices 
 

 
Microsoft® HealthVault™ 

All contents of the Service are Copyright Microsoft Corporation and/or its suppliers, One 
Microsoft Way, Redmond, Washington 98052-6399 U.S.A. All rights reserved. Copyright and 
other intellectual property laws and treaties protect any software or content provided as part of 
the Service. We or our suppliers own the title, copyright, and other intellectual property rights 
in the software or content. Microsoft, HealthVault, Windows, Windows Live, Windows logo, 
MSN, MSN logo (butterfly), and/or other Microsoft products and services referenced herein 
may also be either trademarks or registered trademarks of Microsoft in the United States 
and/or other countries. The names of actual companies and products mentioned herein may be 
the trademarks of their respective owners. The example companies, organizations, products, 
domain names, e-mail addresses, logos, people, places and events depicted herein are 
fictitious. No association with any real company, organization, product, domain name, e-mail 
address, logo, person, places or events is intended or should be inferred. Any rights not 
expressly granted herein are reserved. Certain software used in certain Microsoft web sites 
servers is based in part on the work of the Independent JPEG Group.  Copyright © 1991 -1996 
Thomas G. Lane. All rights reserved. "gnuplot" software used in certain Microsoft web sites 
servers is copyright © 1986-1993 Thomas Williams, Colin Kelley. All rights reserved. 

 

 

Teges Corp™ i-Rounds™ 

Copyright © 2001-2002 Teges Corp.  All rights reserved. 

The Content of this Site (including all software, text, displays, images, and audio) are proprietary 
to Teges Corp. or its Content Providers and are protected by copyright laws of the United States 
and other countries. The compilation of all materials on this Site is the exclusive property of 
Teges Corp. and protected by the copyright laws of the United States and other countries. Any 
reproduction, distribution, public performance, or public display of these materials, in whole or 
in part, is prohibited without the express prior written permission of Teges Corp. or as expressly 
permitted in the Terms of Use.  



 

ii 
 

Teges Corp., and the associated logos, and other marks clearly identified in the Teges Corp. Web 
Site as Teges Corp.'s are Teges Corp. trademarks. You may not use Teges Corp. marks without 
Teges Corp.'s written permission. All other names, brands and marks are used for identification 
purposes only and may be trademarks or registered trademarks of their respective owners. This 
Site, and the Services made available through this Site, are protected under patents pending.   

 

 

GlassFish 

The GNU General Public License (GPL) Version 2, June 1991. 

Copyright © 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, 
MA 02111-1307 USA. Everyone is permitted to copy and distribute verbatim copies of this 
license document, but changing it is not allowed. 

 
 
 
Indiana University Extreme! Lab Software License 
Version 1.1.1 
 
Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved. 
 
 
 

 
 
Microsoft® SQL Server® JDBC Driver 3.0 
 
© 2007 Microsoft® Corporation. All rights reserved. 
 
 
 
 
 



 

iii 
 

 
 

 
 
 
All of the deliverable code in SQLite has been dedicated to the public domain by the authors. All code 
authors, and representatives of the companies they work for, have signed affidavits dedicating their 
contributions to the public domain and originals of those signed affidavits are stored in a firesafe at the 
main offices of Hwaci. Anyone is free to copy, modify, publish, use, compile, sell, or distribute the 
original SQLite code, either in source code form or as a compiled binary, for any purpose, commercial or 
non-commercial, and by any means.  
 
The previous paragraph applies to the deliverable code in SQLite - those parts of the SQLite library that 
you actually bundle and ship with a larger application. Portions of the documentation and some code 
used as part of the build process might fall under other licenses. The details here are unclear. We do not 
worry about the licensing of the documentation and build code so much because none of these things 
are part of the core deliverable SQLite library.  
 
All of the deliverable code in SQLite has been written from scratch. No code has been taken from other 
projects or from the open internet. Every line of code can be traced back to its original author, and all of 
those authors have public domain dedications on file. So the SQLite code base is clean and is 
uncontaminated with licensed code from other projects.  
 
 
 
Zentus 
 
Copyright (c) 2007 David Crawshaw david@zentus.com 
 
Permission to use, copy, modify, and/or distribute this software for any 
purpose with or without fee is hereby granted, provided that the above 
copyright notice and this permission notice appear in all copies. 
 
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL 
WARRANTIES 
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE 
FOR 
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY 
DAMAGES 
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN 
AN 
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING 
OUT OF 

http://en.wikipedia.org/wiki/Public_Domain�
http://www.hwaci.com/�
mailto:david@zentus.com�


 

iv 
 

OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 
 
 
 
 
 

GNU LESSER GENERAL PUBLIC LICENSE  Version 3, 29 June 2007 
Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/> 
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is 
not allowed. 
 
This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 
of the GNU General Public License. 
 

 

 

Visual Studio® 

© 2007 Microsoft Corporation. All rights reserved 

Microsoft products and services—including images, text, and software downloads (the "content")—are 

owned either by Microsoft Corporation or by third parties who have granted Microsoft permission to 

use the content. Microsoft cannot grant you permission for content that is owned by third parties. You 

may only copy, modify, distribute, display, license, or sell the content if you are granted explicit 

permission within the End-User License Agreement (EULA) or License Terms that accompany the content 

or are provided in the following guidelines. For more information, consult your copyright attorney.  

  

http://fsf.org/�
http://www.microsoft.com/about/legal/en/us/intellectualproperty/useterms/default.aspx�


 

v 
 

 

Eclipse™ 

Copyright © 2010 The Eclipse Foundation. All Rights Reserved. 

Unless otherwise indicated, all Content made available by the Eclipse Foundation is provided to you 
under the terms and conditions of the Eclipse Public License Version 1.0 ("EPL"). A copy of the EPL is 
provided with this Content and is also available at http://www.eclipse.org/legal/epl-v10.html. For 
purposes of the EPL, "Program" will mean the Content. 
 
Content includes, but is not limited to, source code, object code, documentation and other files 
maintained in the Eclipse Foundation source code repository ("Repository") in software modules 
("Modules") and made available as downloadable archives ("Downloads"). 
  

http://www.eclipse.org/legal/epl-v10.html�


 

vi 
 

Executive Summary  

The CVM-M mediator is an application that creates a flexible approached to health records 

retrieval. Our goal is to reduce the cost, and the time it takes to retrieve health records, which is a time 

consuming task with the current system. Currently, our system retrieves patient’s health records from two 

databases, TegesICU and Health Vault. The information is then compiled and presented to users in 

different layouts or views selected by the users.   

 

This document will go over the problem, flexibility study, project plan, system requirements, 

system design, detailed design, and system validation.  Through the document the problem will be stated 

and a solution will be describe and presented.  As you read this document there will be a chance to 

compare the alternative solutions describe in the flexibility section.  Many hours were put into designing, 

integrating and deploying this system, which will be described in detailed.  Testing tools were use to find 

problems that the user may expect as result of interaction with system. At the end of the document credit 

was given to all of the sources use during the composition of the system.



 

 
 

Table of Contents 
 

1. Introduction ................................................................................... 1 

1.1. Problem definition ............................................................................................................... 1 

1.2. Scope of the System ............................................................................................................. 1 

1.3 Over all development methodology. .................................................................................... 2 

1.4. Definitions, Acronyms and Abbreviations ............................................................................ 3 

1.5. Overview of the document .................................................................................................. 5 

2. Feasibility Study ............................................................................. 6 

2.1 Description of current system.  Identify limitations and constraints ................................... 6 

2.2 Description of alternative solutions considered. .................................................................. 6 

2.3 Recommendation with explanation of why the solution was selected. ............................... 7 

3. Project Plan .................................................................................... 9 

3.1. Project Organization ............................................................................................................. 9 

3.1.1. Project Personnel Organization ........................................................................................ 9 

3.1.2. Hardware and Software Resources ................................................................................... 9 

3.2. Identification of Tasks, Milestones and Deliverable (work breakdown with cost estimate 
for milestones) .......................................................................................................................... 11 

3.3. Cost of the project .............................................................................................................. 11 

4. System Requirements ................................................................. 13 

4.1. Functional and Nonfunctional Requirements .................................................................... 13 

Nonfunctional Requirements .................................................................................................... 13 

4.2 Analysis of Requirements .................................................................................................... 15 

4.2.1 Use Case Model ................................................................................................................ 16 

4.2.2. Static Models ................................................................................................................... 16 

4.2.3. Dynamic Models .............................................................................................................. 27 

  



 

 
 

5. System Design (i.e., overall system design) ................................. 28 

5.1. Overview ............................................................................................................................ 28 

5.2. Subsystem Decomposition ................................................................................................. 29 

5.3. Hardware and Software Mapping ...................................................................................... 30 

5.4. Persistent Data Management ............................................................................................ 31 

6. Detailed Design .......................................................................... 33 

6.1. Overview ............................................................................................................................ 33 

6.2. Static Model ....................................................................................................................... 34 

6.3. Dynamic Model .................................................................................................................. 34 

6.4 Code Specification ............................................................................................................... 36 

7. System Validation ....................................................................... 39 

7.1 Subsystem Test .................................................................................................................... 39 

7.2 System Tests ........................................................................................................................ 39 

8. Glossary ...................................................................................... 50 

9. References .................................................................................. 52 

10. Appendix .................................................................................. 54 

10.1 Appendix A - Project schedule (Gantt chart or PERT chart). ............................................. 54 

10.2 Appendix B – All use cases with nonfunctional requirements. ......................................... 55 

10.3 Appendix C – User Interface designs ................................................................................. 79 

10.4 Appendix D – Analysis models (static and dynamic) ......................................................... 88 

10.5 Appendix E – Design models (static and dynamic) ........................................................... 96 

10.6 Appendix F – Documented Class interfaces (code) and constraints. ................................ 98 

10.7 Appendix G - Documented code for test drivers and stubs. ........................................... 103 

10.8 Appendix H – Diary of meeting and tasks for the entire semester. ................................ 106 

 



 

1 
 

1. Introduction 
This chapter contains an overview of the CVM Mediator (CVM-M) design, which 

contains the problem definition, it incorporates the design methodology used and the 

terminology required to become familiar with the system.  This chapter will also give a brief 

explanation of what to expect in the next chapters of this document. 

 
1.1. Problem definition 
 In today’s society, providers need to rely on patient’s to retrieve medical records related to that 

patient.  Using methods of transferring information such as paperwork, storage media, and one time 

electronic sending have proved to be unreliable and somewhat inaccurate to present patients current 

health.  These methods can encompass multiple records with data repeated multiple times, which can 

delay time for providers.  Having multiple sources of information is good, but without a proper way to 

organized that data can lead to erroneous results and be time consuming for providers.  Providers are 

force to give the patient the responsibility of keeping these documents up to date, since the current system 

creates that dependency.  The data can be lost, since it can amount to stacks of information, which needs 

to be kept safe and secure.  Precious time is sacrifice, since records are kept disorganized and not 

chronological.  The current system has proved very erroneous, time consuming, and unreliable. 

The current problem is that the patient has to be responsible for its medical documents, which 

include its past and present information.  Given the job of retrieving all this information with the current 

system to the provider has proving to be an expensive and time consuming task. 

 

1.2. Scope of the System 

The system will allow all authorized users to query patient multiple medical records without 

having to worry about time or day.  Users are doctors and authorized medical personnel.  The system will 

rely on medical databases to query patients’ information.  The system will download all compile medical 

information and store in a temporary folder for each user.  The system will display all medical 

information using XML. 

  



 

2 
 

 
1.3 Over all development methodology. 

 
 For the purpose of this project the Unified Software Development Process model (Unified 

Process)(see Figure 1) was used to develop this system.   The systems requirements were used in order to 

create the sequence diagrams (Olmos) which will be use for better understanding of how processes 

operate and interact with each other. Base on this information, a minimal class diagram, detailed class 

diagram and deployment diagram were created. 

 The minimal and detailed class diagrams were created in order to understand the behavior and 

interaction between each class. The minimal class diagram describes the association between all classes 

and the packages they are in, while the detail class diagram describes in details each class, by providing 

the signatures of important methods and attributes within the classes. The deployment diagram describes 

what hardware and software components to be use and how they interact with each other.  Below there is 

a representation of all activities of system design.  

 

The following diagram is the unified software development process model that was used for the 

development of this project. The USDP is iterative and incremental process model and since is Use Case 

driven it means that we can define the contents of the iteration. Each iteration uses a set of use cases 

which will be use for implementation.  

 
 

Use case 
model

Analysis model

Design model

Deployment 
model

Implementation 
model

Test model

System 
Development

specified by

realized by

distributed by

verified by

implemented by

 

Figure 1: Unified Software Development Process (Clarke) 



 

3 
 

1.4. Definitions, Acronyms and Abbreviations 

 The following definition, acronyms and abbreviations will be used throughout the 
remainder of this document: 
 

• CVM-M (Communication Virtual Machine Mediator):  is a system that translates different data 

sources into usable schema for displaying. 

• XML (Extensible Markup Language):  is a set of rules for encoding documents electronically. It 

is defined in the produced by the W3C and several other related specifications; all are fee-free 

open standards. (XML). 

• UML (Unified Modeling Language):  is an open method used to specify, visualize, construct and 

document the artifacts of an object-oriented software-intensive system under development. It is 

typically used in large development teams as a bridge between process models and software 

development. Good process modeling tools can output the information required to develop the 

services required to UML, so that the development team can import the information directly into 

their software development tools. Some developers insist of hand crafting the UML and ignoring 

process inputs. However, despite their claims, it cannot replace process modeling to define 

business processes effectively. (Unified Modeling Language). 

• USDP (United Software Development Process):  The USDP or Unified Process is a popular 

incremental software development process framework.  The Unified Process is not simply a 

process, but rather an extensible framework which should be customized for a specific 

organizations or projects. (Unified Process). 

• SDK (Software Development Kit):  is typically a set of development tools that allows for the 

creation of applications for certain software package, software framework, hardware platform, 

computer system or similar platform. (Software development kit).   

• JVM (Java Virtual Machine):  enables a set of computer software programs and data structures to 

use a virtual machine model for the execution of other computer programs and scripts. The model 

used by a JVM accepts a form of computer intermediate language commonly referred to as Java 

byte code. This language conceptually represents the instruction set of a stack-oriented, capability 

architecture. (Java Virtual Machine). 

• SQL (Structured Query Language):  a worldwide standard used to manage data in relational 

databases. SQL facilitates the sharing of data especially in large and interconnected databases. 

(SQL). 

• GUI (Graphical User Interface):  Allows users to interact with programs in more ways than 

typing such as computers. A GUI offers graphical icons, and visual indicator, as opposed to text-



 

4 
 

bases interfaces, typed command labels or text navigation to fully represent the information and 

actions available to a user. (Graphical user interface). 

• System:  The entity that takes care of all the CVM-M User input requests and return outputs base 

on these requests. 

• CVM-M Interface:  Control Page where CVM-M user will request the task that the system will 

get assign to. 

• CVM-M User:  is the Entity that request information from the system. 

• Java:  is a programming language originally developed by James Gosling at Sun Microsystems 

(which is now a subsidiary of Oracle Corporation) and released in 1995 as a core component of 

Sun Microsystems' Java platform. The language derives much of its syntax from C and C++ but 

has a simpler object model and fewer low-level facilities. (Java). 

• Data Sources:  The repository that contains information of a medical record that is use in a 

system. 

  



 

5 
 

1.5. Overview of the document 
 The rest of this document consists of detailed information on the process of designing the  

CVM-M. The next chapters will contains and describes all the phases of development that lead to 

the CVM-M system. It presents the Feasibility Study, which contains different solutions that 

were presented as alternative solutions.  You can also find the project organization, work break 

down and Miles stones for each deliverable.  The system requirements can be found in chapter 4, 

which gives and introduction to the proposed system, together with is functional and non 

functional requirements.  Chapter 5 consists of the system design, which contains the 

decomposition of the subsystem and hardware and software mapping. The document also gives 

an introduction to the detailed design and an overview of the behavior and structure of each 

subsystem.  In chapter 7, you can find the system validation, which describes the two approaches 

used and the test cases used for each approach. And at the end of the chapter there is an 

evaluation of test. The document also contains a glossary of all the terms used for the 

documentation, as well as a reference chapter which contains reference to other sources used for 

the project. At the end of the documentation you can find the appendix, which contains all the 

diagrams, design models, code documentation, meetings and tasks.  

  



 

6 
 

2. Feasibility Study 
 
2.1 Description of current system.  Identify limitations and constraints 

 
The system that is currently been use in the healthcare system relies on patients for the 

most part.  Healthcare providers and Doctors access the patient’s medical records when the 

actual patient provides them. Medical records are documented in paper and electronic media, but 

all records are store in the facility or given to the patient once documented or store in a media.   

The system puts the patient as the carrier of information, which is acquired from different 

facilities.  Patients either keep the data or retrieve from different encounters.  The information is 

provided in a need to know basis.  The patient provides all of the information needed by a 

provider, so that this information can be useful for a future diagnosis. 

For a provider to be able to pull a record when a patient starts a visit or is in an 

emergency it can take a long time before the patient gets seen or prep for surgery because of the 

amount of time it takes to retrieve all records from the patient.  Most patients will have some of 

their records with them, but others either have little or none.  The patient has the responsibility of 

keeping tabs on all records generated based on his or her visits to different facilities.  Keeping up 

with all this information can lead to lost of data and lots of bad situations.   

1. The system becomes expensive for the patient and the provider, making the cost seem ridiculous over 

time.   

2. Many surgeries and treatments can go bad because of the information lost with this current system.   

3. The lost of time cause by this current system, can lead to many avoidable deaths. 

 
2.2 Description of alternative solutions considered.   
 

Alternative 1:  Physical Pick Up 

Medical records can be picked up physically by the patient.  The legal guardian of a 

patient under the age of 18 can physically pick up the records by showing proof of being a legal 

guardian of the patient.  A person whom is not a legal guardian can also pick up the records with 

a note from the patient.  This note of course has to be notarized in order to be considered valid to 

release the records.  Medical personnel can also retrieve the medical records in person if they so 



 

7 
 

choose to after patient have clear them to do so.  This method is very troublesome since medical 

personnel need to go to the hospital or medical facility in person and ask for them.  This could 

take time in order to have the complete record retrieved and copy for the medical personnel 

requesting or patient. 

 

Alternative 2:  Email 

Medical records can be send via email to any medical personnel or authorized person 

after patient has clear them to do so and medical personnel have been clear as an authorize 

person to handle the incoming information.  This method takes time because you have first have 

to verify that the person requesting the record via email is a person authorize to do so. This 

method could be an easy way to violated security.  Medical records could be sent to the wrong 

email and be read by many unauthorized people.  Email also has a constraint on the amount of 

information you can send through it servers.   

 

 

Alternative 3:  Communication Virtual Mediator (CVM) 

  This system will provide medical personnel easier ways to get medical records on a click 

up a button.  The CVM will authenticate parties on conference call and will provide medical 

records from one party to another just by clicking and dragging the information you want to send 

to the other medical personnel or authorize personnel.  You can send partial information such as 

text information, pictures, or video or if you choose to all the medical record.  This system will 

allow you to communicate with the other client in a one to one interface via video and voice or 

multi clients on a conference scenario to discuss any information in which they have questions 

on.  This method would save medical personnel a lot of time in receiving medical records from 

hospital or medical facilities not on their database network.  The facts that only authorized 

personnel can log in into this system cuts down on breach of medical record leaks. 

 
2.3 Recommendation with explanation of why the solution was selected. 

 
When the time comes for patient to retrieve their medical records, several issues have to 

be attended. Even though “Physical Pick Up” and “Email” solutions are better in an economic 

point of view, they lack of efficiency and security. Now days the patient has the responsibility to 



 

8 
 

keep their medical records up to date, and stored in a secure way. This can become a problem for 

the patient as well for any institution. Information can be lost, and the security of the patient’s 

information can be easily violated. 

Our system will provide medical personnel with easier ways to get medical records on a 

click up a button.  Authorized personnel will be able to save a huge amount of time by receiving 

a patient’s medical records from different medical facilities at the same time. Communication 

Virtual Machine Mediator (CVM-M) is a very efficient solution to one of the biggest problem 

that faces our American society. 

  



 

9 
 

3. Project Plan 
 This chapter describes the management, planning and organization aspects of the 

software’s development. Section 3.1 covers the assignment of roles of each team members as 

well as a list of all the hardware and software components required. Section 3.2 breaks down the 

work schedule and explains all tasks and milestones (refer to Appendix A – Gantt chart and 

Appendix B – Meeting Dairy) created for the project.  

 

3.1. Project Organization 
This section explains the personnel organization and hardware and software components 

required for the software development.  

 

3.1.1. Project Personnel Organization 
The table below contains the major roles assigned to each member throughout all phases 

of the development process. 

Name Deliverable 1  Deliverable 2  Deliverable 
3  

Final Deliverable  

Eduardo Flores Minute Taker/ 
Business 
Analyst 

Time Keeper/ 
Business 
Analyst 

Team 
Leader/ 

Designer 

Time Keeper/ 
Developer 

Ivan Olmos System Analyst Minute Taker/ 
System Analyst 

Time 
Keeper/ 
Designer 

Team Leader/ 
QA Manager 

Jandry Guerra Team Leader Time Keeper Architect Minute taker/ 
Developer 

Luis Bautista Time Keeper/ 
Business 
Analyst 

Team Leader Minute 
taker/ 

Integrator 

QA Analyst/ 
Developer 

       Table 1: Personnel Roles 

 
3.1.2. Hardware and Software Resources 
Hardware requirements: 
 Server 

• 2.0 GHz processor speed 

• 2GB RAM or Higher 

• 500  GB available HDD space or higher 



 

10 
 

 Client 

• 2.0 GHz or equivalent 

• 2GB RAM 

• 120 GB available HDD space 

 

Software requirements: 
 Server 

• Windows server 2008 R2 

 Client 

• Windows® XP or later version 

 Document 

• Microsoft Project Professional 

• Star UML 

 Development/Testing 

• Eclipse 

• JUnit 

• EclEmma 

 

 



 

11 
 

3.2. Identification of Tasks, Milestones and Deliverable (work breakdown with cost 

estimate for milestones) 
 

 
 
3.3. Cost of the project 
 This section will describe the cost to develop the software system using COCOMO II.  
This tool program is used to calculate the amount of time one person spends working on the 
software project for one month.  We use the standard COCOMO II equation of

, where A = 2.94, B = 1.0997, Size = 1749 which is the size of the project and 
  = is the estimated person-month.  A & B are standard constants in this equation and 

the only thing that changes is Size, which are the thousands of single line of code in this project. 
COCOMO II lets you customize the cost drivers’ base on a scale of very low to extra high.  This 
scale of course depends on how much your project depends on the following criteria’s. Example, 
DATA (Database size) is not much of concern in this project and therefore a project value of low 
was assigned to it and so forth. After all the inputs criteria were adjusted in COCOMO II, we got 
a result of 8 person-month, schedule of 4 months, and a total cost of $17,293 for this project. 



 

12 
 

Effort = 8 Person-months 

Schedule = 4 Months 

Cost = $17293 

 
Figure 2: COCOMO Cost Report 

  



 

13 
 

4. System Requirements 

Introduce the proposed system (one or two paragraphs). 
 
4.1. Functional and Nonfunctional Requirements 
 

This chapter contains information about the functional and non-functional system 

requirements. Each requirement contains the use case id’s which makes use of those 

requirements.  

 

Functional Requirements 
 
This session highlights the system requirements to be implemented.  

 

1. The system shall provide a Create login form (Use Case ID: CVM-M - HL - 23)* 

2. The system shall allow user to Login (Use Case ID: CVM-M - HL – 02)* 

3. The system shall allow Mask Password(Use Case ID: CVM-M-SL-25)* 

4. The system shall allow users to Recovered Password (Use Case ID: CVM-M-HL-21)* 

5. The system shall allow user to Query Information (Use Case ID: CVM-M - HL - 07)* 

6. The system shall allow data to be compile (Use Case ID: CMV-M-SL-10)* 

7. The system shall stored compile data into a temporary storage (Use Case ID: CVM-M-SL-13)* 

8. The system shall display the patients information (Use Case ID: CVM-M-SL-16)* 

9. The system shall have a session time if user become idle (Use Case ID: CVM-M-SL-17)* 

10. The system shall allow users to log out from the system (Use Case ID: CVM-M-HL-22  )* 

*More detailed use case requirements can be found in Appendix A 

 

 Nonfunctional Requirements 
Usability  

• On average the user should take 20 seconds to perform the log in procedure    

 (Use Case ID: CVM-M - HL – 02). 

• On Average the user should take 15 seconds to request patient’s information   

 (Use Case ID’s: CVM-M - HL - 07). 

• On average the user shall take 3 minutes to complete the send request form   

 (Use Case ID’s: CVM-M - HL - 21). 



 

14 
 

• On average the user shall take 20 seconds to create an account    

  (Use Case ID’s: CVM-M - HL - 23). 

• A help file should be available to describe the information been displayed   

 (Use Case ID’s: CVM-M-SL-16). 

• Training is not require to use this feature       

 (Use Case IDs: CVM-M - HL – 02, CVM-M - HL - 07, CVM-M-HL-21,   

 CVM-M-HL-22,  CVM-M - HL – 23, CVM-M-SL-08, CMV-M-SL-10,    

 CVM-M-SL-13, CVM-M-SL-16) 

 Reliability 

• 10% failures for every twenty four hours of operation are acceptable.   

 (Use Case IDs: CVM-M - HL – 02, CVM-M - HL – 23, CVM-M-SL-16). 

• 5% failures for every twenty four hours of operation is acceptable    

 (Use Case IDs: CVM-M - HL – 07, CVM-M-HL-21, CVM-M-HL-22, CVM-M-SL-08, 

  CMV-M-SL-10). 

• 2% failure for every 4 Hours of operation is acceptable     

 (Use Case IDs: CVM-M-SL-13). 

• System should be available all the time except during server maintenance.   

 (Use Case IDs: CVM-M - HL – 02, CVM-M - HL – 07, CVM-M-HL-21,   

 CVM-M-HL-22, CVM-M - HL – 23, CVM-M-SL-08, CMV-M-SL-10, CVM-M-SL-13, 

 CVM-M-SL-16). 

 Performance 

• User verification should be done under 1 second      

  (Use Case IDs: CVM-M - HL – 02, CVM-M - HL - 23). 

• System should be able to handle 10 requests per second     

 (Use Case IDs: CVM-M-HL – 02, CVM-M - HL – 07, CVM-M - HL - 23).  

• System shall base query time on the amount of current data sources     

 (Use Case IDs: CVM-M - HL - 07).  

• Request shall be sent and saved within 7 seconds       

 (Use Case IDs: CVM-M - HL - 21).  

• System shall be able to handle 50 requests in 1 minute     

 (Use Case IDs: CVM-M - HL - 21).  

• Request shall be sent and confirmed within at least 10 seconds    

 (Use Case IDs: CVM-M - HL - 22).  



 

15 
 

• System shall be able to handle 100 requests in 1 minute     

 (Use Case IDs: CVM-M - HL - 22).  

• Request shall be handle in less than 5 seconds       

 (Use Case IDs: CVM-M-SL-08). 

• System shall be able to handle on average of 100 request per day.    

 (Use Case IDs: CVM-M-SL-08, CMV-M-SL-10). 

• Request should be handle in less than 5 minutes      

  (Use Case IDs: CVM-M-SL-10). 

• System shall be able to handle 50 I/O’s per second       

 (Use Case IDs: CVM-M-SL-13). 

• System shall take no longer than 30 seconds to layout information being display to the CVM-

M user           

 (Use Case IDs: CVM-M-SL-16). 

• File access time shall be at least at the speed of a conventional network    

 (Use Case IDs: CVM-M-SL-13). 

Supportability 

• Supported by any JVM          

 (Use Case IDs: CVM-M - HL – 02, CVM-M - HL – 07, CVM-M - HL – 21,   

 CVM-M - HL – 22, CVM-M - HL - 23).  

• The system shall be able to handle database engine and file systems.    

 (Use Case IDs: CVM-M-SL-08). 

• The transferring of files needs a file allocation system     

 (Use Case IDs: CVM-M-SL-13). 

• The display of the information needs a control that can read and layout XML data   

 (Use Case IDs: CVM-M-SL-16). 

• The system should be able to handle database engine, data file such as documents, photos, 

video, and any window related file        

 (Use Case IDs: CVM-M-SL-10). 

 

4.2 Analysis of Requirements 
 The following sections will go over the Models that describe how the user interacts with 
the system resources.  The models included are the following: Use Case, Static, and Dynamic 
models. 



 

16 
 

4.2.1 Use Case Model 
Different cases that the CVM-M user can encounter when entering the system are shown.  

The main cases occurred when the user login’s, steps into CVM-M Interface, Query’s 
Information and Compiles Information.  Each case that display’s information shows the word 
“Display” in it.  Cases that have no dependencies or inclusions are use for a single purpose.  
Compiling and Sorting Exceptions case extends the Compile Information case by responding to 
all included Compile Information cases.  Tree new use cases were added, Link Patient Id, 
TegesICU Patient and HealthVault Patient.  

 
Figure 3: Use case model 

 
 

4.2.2. Static Models 
The CVM-M user has to be instantiated at least once to start the system cycle.  Each 

CVM-M user that logs into the system will contain a session, which keeps tracks of the user state 
while in the system.  Each Session in the system will submit a request to the CVM-M Mediator 
base on the CVM-M user input. Below you will find all the scenarios with their reference to the 
object diagrams.  
 
 
 
 
 

System

Forgot Password

CVM-M user

Query Information

Compile Information

Display Compile Information

Logout
Create Login

Login

Mask Password

<<include>>

<<include>>

Link Patient Id

TegesICU Patient HealthVault Patient

<<include>> <<include>>



 

17 
 

Scenarios: 
Scenario Id: CVM-M-HL-23-Create Login– Dr. John wants created a new login account. 

Summary: This scenario describes a sequence of events that Dr. John follows to create a new 

login account. 

Actors:  Dr. John 

Media types: None  

Scenario Description 

Preconditions:  

 Dr. John has CVM-M up and running but is not logged in. 

Description of the scenario: 

Dr. John clicks on CREATE ACCOUNT button. 

CVM-M redirects Dr. John to the create account page. 

Dr. John enters username (drjohn123), enters password (access), selects a 

predefined question (What kind of access?), an answer to the question 

(totalaccess) and enters email address (drjohn123@yahoo.com). 

Dr. John clicks on the CREATE button. 

CVM-M redirects Dr. John to the login page. 

Post Condition: 

  Dr. John has a new an active account and is ready to login. 
*See Appendix C: Figure 7 
  

mailto:drjohn123@yahoo.com�


 

18 
 

 
Scenario Id: CVM-M-SL-25-Mask Password– Dr. John wants login onto CVM. 

Summary: This scenario describes a sequence of events that CVM has to perform in order to 

maintain a secret password. Dr. John should be the only person who knows what password is 

being typed on the screen. 

Actors:  Dr. John 

Media types: None  

Scenario Description 

Preconditions:  

 Dr. John has CVM-M up and running but is not logged in. 

Description of the scenario: 

Dr. John enters username (drjohn123). 

Dr. John starts to enter his password (access). 

CVM-M recognizes that Dr. John is entering password and mask it so is not 

recognized by anyone around looking at the screen. 

Post Condition: 

  Dr. John clicks on the LOGIN button. 
 
*See Appendix C: Figure 4 
  



 

19 
 

Scenario Id: CVM-M-SL-17-Session Time Out– Dr. John is idle for a specific time. 

Summary: This scenario describes a sequence of events that CVM-M follows to ensure security 

while system is idle. 

Actors:  Dr. John 

Media types: None  

Scenario Description 

Preconditions:  

 Dr. John has CVM-M up and running. 

 Dr. John is logged onto CVM-M. 

Description of the scenario: 

 CVM-M is idle for 15 minutes. 

 CVM-M displays a timeout dialog with 30 second timer. 

CVM-M logs Dr. John out the system when timer has reached 0 on the counter. 

CVM-M redirects Dr. John to the login page.  

Post Condition: 

  Dr. John is logged out of the system. 
  
*See Appendix C: Figure 5 
  



 

20 
 

 
Scenario Id: CVM-M-SL-16-Display Compile Information– Dr. John wants to display the compile 

information being held in the temporary folder 

Summary: This scenario describes a sequence of events Dr. John and CVM-M go through to 

display compile information. 

Actors:  Dr. John 

Media types: None  

Scenario Description 

Preconditions:  

 Dr. John has logged in and is running CVM-M. 

Description of the scenario: 

Dr. John enters the patient id “12345”. 

Dr. John clicks on the SEARCH button. 

CVM-M queries the patient data from database. 

CVM-M starts to compile all data sources base on patient id. 

CVM-M temporarily stores information in a folder. 

CVM displays the information using a XML schema. 

Post Condition: 

  CVM-M is displaying compile information. 
 
*See Appendix C: Figure 11 
  



 

21 
 

 
Scenario Id: CVM-M-SL-13-Temporaty Storage– Dr. John wants to store information in a 

temporary folder. 

Summary: This scenario describes a sequence of events Dr. John and CVM-M go through to 

save all organized information on a temporary folder. 

Actors:  Dr. John 

Media types: None  

Scenario Description 

Preconditions:  

 Dr. John has logged in and is running CVM-M. 

Description of the scenario: 

Dr. John enters the patient id. 

Dr. John clicks on the SEARCH button. 

CVM-M queries the patient data from database. 

CVM-M starts to compile all data sources base on patient id. 

CVM-M temporarily stores information in a folder. 

Post Condition: 

  CVM hold information on a temporary folder. 
 
*See Appendix C: Figure 10 
  



 

22 
 

 
Scenario Id: CVM-M-SL-10- Compile Information– Dr. John wants to compile information. 

Summary: This scenario describes a sequence of events that Dr. John follows to compile 

information from patient. 

Actors:  Dr. John 

Media types: None  

Scenario Description 

Preconditions:  

 Dr. John has logged in and is running CVM-M. 

Description of the scenario: 

Dr. John enters the patient id. 

Dr. John clicks on the SEARCH button. 

CVM-M queries the patient data from database. 

CVM-M starts to compile all data sources base on patient id. 

Post Condition: 

  CVM save information to temporary storage. 
 
*See Appendix C: Figure 9 
  



 

23 
 

 
Scenario Id: CVM-M-HL-22-Logout– Dr. John wants to logout of CVM-M. 

Summary: This scenario describes a sequence of events that Dr. John follows to logout or 

disconnects from CVM-M. 

Actors:  Dr. John 

Media types: None  

Scenario Description 

Preconditions:  

 Dr. John is logged onto the system. 

 The CVM-M interface is being displayed. 

Description of the scenario: 

Dr. John clicks on the LOGOUT button. 

CVM-M asked for confirmation by clicking the OK button or CANCEL button. 

Dr. John clicks on the OK button. 

CVM-M logs Dr. John out of the system. 

CVM-M redirects Dr. John to the login page. 

Post Condition: 

  Dr. John is no longer logged onto the system. 
 
*See Appendix C: Figure 3 
  



 

24 
 

 
Scenario Id: CVM-M-HL-21- Forgot Password– Dr. John wants to get a new password. 

Summary: This scenario describes a sequence of events that Dr. John follows to get a new 

password after old one, was forgotten. 

Actors:  Dr. John 

Media types: None  

Scenario Description 

Preconditions:  

 Dr. John has not logged onto the CVM-M 

 CVM-M is displaying the login page. 

Description of the scenario: 

Dr. John clicks on the FORGOT PASSWORD link. 

CVM-M redirects Dr. John to the forgot password page. 

Dr. John enters his email address (drjohn123@yahoo.com) and answers the 

predetermine question (totalaccess). 

 Dr. John clicks on the SEND button. 

 CVM-M will verify data was correct and issue a new password (access2). 

 CVM-M notifies DR. John of new password 

Post Condition: 

  The new password replaces the old password in the CVM-M. 
 
*See Appendix C: Figure 6 
  

mailto:drjohn123@yahoo.com�


 

25 
 

 
Scenario Id: CVM-M-HL-07- Query Information – Dr. John wants to query information. 

Summary: This scenario describes a sequence of events that Dr. John follows to query 

information based on a patient id. 

Actors:  Dr. John 

Media types: None  

Scenario Description 

Preconditions:  

 Dr. John has logged in and is running CVM-M. 

 CVM-M has already redirected Dr. John to the CVM-M interface.  

Description of the scenario: 

Dr. John enters the patient id. 

Dr. John checks the box next to the template desired. 

Dr. John clicks on the SEARCH button. 

 

Post Condition: 

  CVM-M will query the patients’ data from the database. 
 
*See Appendix C: Figure 8 
  



 

26 
 

 
Scenario Id: CVM-M-HL-02- Login – Dr. John wants to login to CVM-M. 

Summary: This scenario describes a sequence of events that Dr. John follows to login to the 

CVM-M. 

Actors:  Dr. John 

Media types: None  

Scenario Description 

Preconditions:  

The login window has been activated and displayed properly. 

Description of the scenario: 

The Login window is displayed to Dr. John. 

Dr. John enters his user id (drjohn123) and password (access). 

Dr. John clicks on the LOGIN button. 

CVM-M identifies and authenticates Dr. John. 

CVM-M redirects Dr. John to the CVM-M Interface after a successful 

identification and authentication. 

 

Post Condition: 

  Dr. John is now able to perform tasks in the CVM-M Interface 
 
*See Appendix C: Figure 2 
  



 

27 
 

 
4.2.3. Dynamic Models 

• The Login Sequence Diagram shows the process that the system goes through when a user 
attempts to login onto the CVM-M Interface.  

• The Logout Sequence Diagram shows the process that the system goes through when a user 
attempts to logout to the CVM-M Interface.  

• The Mask Password Sequence Diagram shows the process that the system goes through when a 
user inserts a password in the Login Page.  

• The Session Time-Out Sequence Diagram shows how the user would get logged off or 
disconnected when it becomes inactive during the CVM-M Interface. 

• The Forgot Password Sequence Diagram shows the process that the system goes through when a 
user forgets his password and attempts to recover it.  

• The Create Login Sequence Diagram shows the process that the system goes through when a new 
user attempts to create a login account.  

• The Query Information Sequence Diagram shows the process that the system goes through when 
a new query is submitted.  

• The Compile Information Sequence Diagram shows the process that the system goes through 
when the information been query is compiled.  

• The Temporary Storage Sequence Diagram shows the process that the system goes through when 
the information compiled is stored in a temporary folder for the user.  

• The Display Compile Information Sequence Diagram shows the process that the system goes 
through when the information compiled is displayed for the user in the CVM-M Interface.  

*See Pages 41-49 for the Sequence Diagrams.  



 

28 
 

 

5. System Design (i.e., overall system design)  
 

This chapter introduces the system decomposition and gives a high level description of 

the system design architecture. It also describes the subsystem decomposition and identifies the 

requirements associated with each subsystem. In section 2.3 there is a diagram describing the 

hardware and software mapping, which shows the association between the subsystems and 

hardware. This chapter will also identify persistent data management in order to identify data 

that needs to be stored.  

 
5.1. Overview 

The CVM-Mediator system uses two-tier architecture which is composed of a client and 

multiple servers. The client interface consists of a Mediator and Proxy architecture. The Reason 

for the Mediator is to control the interaction between all the data sources and to allow the system 

to become extensible. The system has two servers at the moment, which are TegesICU and 

Microsoft Vault (Microsoft HealthVault).  

  

 
Figure 4: Package Diagram 

 
The client interface subsystem is in charge of presenting the user interface, and 

application logic that will interacted with the servers. It allows users to login and log out of the 

system; however, the main functionality is that it allows users to query patient’s health records. 

Client
<<Subsystem>>

Controller

View Model

Microsoft Vault
<<Subsystem>>

TegesICU Server
<<Subsystem>>

UI



 

29 
 

The mediator in the client interface will compile the patient’s information, which will later be 

displayed to the CVM-M user. Inside the Client we use a model view controller architecture 

which will helps up query the data, compile it, and display the information on different views 

determined by the controller. Inside the client we also have a package called the UI which 

contains all the forms and interfaces of the system. 

The Servers subsystem consists of multiple servers, which contain the patient’s health records. 

For the TegesICU server, SQL (SQL) commands are used to query the data, while for the 

Microsoft Vault, an SDK (Software development kit) library will be use to obtain the data from 

the data source.  

 

5.2. Subsystem Decomposition 
Mediator Subsystem (client) 

The client is composed of a Model-View-Controller (MVC), which controls the different 

templates or layouts to be displayed. Also the client has a mediator design pattern which controls 

the interactions between all the data sources and provides an interface for user interaction. This 

subsystem provides CVM-M users with the capability to log in and log out of the system. It also 

allows CVM-M users to search patient’s health records using a unique patient ID. The mediator 

connects to multiple data sources in order to retrieve the patient’s information, which is to be 

displayed to the CVM-M users.  

 

Data Sources Subsystem (servers) 

This subsystem consists of several databases which will be use to retrieve patients health 

record information. No data will be store in this database, the main purpose, is to retrieve 

information only.   

  



 

30 
 

5.3. Hardware and Software Mapping 
The CVM-Mediator software will consist of two-tier architecture. The system is 

composed of a client, which connects to several servers in order to retrieve patient’s health 

records. The client is supported by all windows operating system and will require at least 512 

MB of RAM. In order to interact with the system it is required to have Firefox (Mozilla Firefox) 

or Google chrome (Google Chrome) installed. The mediator will be able to connect to several 

servers such as the TegesICU server and Microsoft Vault.   

 

 
Figure 5: Deployment Diagram 

 
  

:MicrosoftServer
<<Microsoft Vault>>

CVM user:PC
<<Client Interface>>

:TegesServer
<<TegesICU>>

:TegesICU Server

:Microsoft Vault
-Windows 7/Vista/XP
-1.7 GHz or equivalent processor
-512 MB RAM
-Firefox or Chrome installed
-Mouse and KeyBoard
-Internet Connection

:Controller

:View
:Model

1.5 Mbps or more 
Internet speed

UI



 

31 
 

5.4. Persistent Data Management 
5.4.1. Data Retrieval 
 The System is accessing two data sources, which contain information that will be retrieve 

and process through the CVM-Mediator System.   

 The first data source (see Figure 4) is the Microsoft Vault system.  The data contained in 

this system, is a collection of health care system summaries.  The information that is extracted 

from the Microsoft Health Vault will be transferred to the CVM-Mediator as a file, which will be 

mapped, store and display within the CVM-Mediator system.   

 

Allergy

FK1 PatientID
 Name
 Reaction
 First Observed

Condition

FK1 PatientID
 Name
 Status
 Onset Date

Family History

FK1 PatientID
 Condition
 Onset Date
 Relationship

Inmunization

FK1 PatientID
 Name
 Administration Date
 Sequence

Procedure

FK1 PatientID
 When
 Name
 Anatomic location

Blood Glucose Measurement

FK1 PatientID
 Date
 Blood Glucose
 Measurement Type

Blood Pressure Measurement

FK1 PatientID
 Date
 Systolic
 Diastolic
 Pulse

Height Measurement

FK1 PatientID
 Date
 Height Lab Test Results

FK1 PatientID
 Group
 Status
 Orederd By
 Date

Weight Measurement

FK1 PatientID
 Date
 Weight

Medication

FK1 PatientID
 Name
 Reason of taking

Basic Demographic Information

FK1 PatientID
 Gender
 Birth year
 Country
 Postal code

Emergency or Provider Contact

FK1 PatientID
 Name
 Phone number
 Contact type

Personal Contact Information

FK1 PatientID
 Address
 Phone
 Email

Personal Demographic Information

FK1 PatientID
 Name 
 Birth date
 Ethnicity
 Blood type

Patient

PK PatientID

 FirstName
 LastName
 Address
 City
 State

 
Figure 6 – Microsoft Vault 

  



 

32 
 

 The second data source (see Figure 5) is the TegesICU system.  The data contained 

within this system is composed of different tables that are related by a patientID, 

HospitalizationID, and MedicationID.  Some of the tables in the TegesICU system will contain 

references to tables that will be retrieved by the CVM-Mediator, which will be use as part of the 

retrieval.  The Data will be retrieved by creating a relational database connection to the 

TegesICU data source.  The data retrieved will not be stored until is ready to be display. 

 

 

 
Figure 7 - TegesICU Database 

  



 

33 
 

6. Detailed Design 
 In this chapter a deeper and more complete description of the system will be discussed.  The 

classes use and the interactions between them will be described.  The main control will be viewed in a 

state diagram, which will show the different actions taken by the user in.  The algorithm use in the 

problem solution will be discussed.  The refined sequence diagrams will be outlined.  The main control 

class interfaces will described by its functions and constraints. 

 

6.1. Overview 
 The two subsystems are the Client Interface and the Server Interface.  In the Client Interface the 

CVM-M User will interact with the application that will drive the information, which is compiled and 

display to the user.  The Client Interface is composed of a Model-View –Controller architecture pattern in 

order to presents different layouts of the patient’s health records.  The controller will be in charge of 

retrieving the data, which the model will compile to later be presented to the user. 



 

34 
 

6.2. Static Model 
The Client Interface is composed of MVC architecture pattern.  Therefor we have three packages 

inside the client subsystem.  Inside of the Client there are pages, users, and buttons (Command Pattern).  

The pages are a Login_Page, Lost_Password_Page, Create_Loging_Page, CVM-Interface, and 

DS_Settings_Page.  The users will aggregated in many of the pages with the CVM-M_User 

object(Singleton Pattern).  The buttons will be use in many of the pages to perform the redirect command, 

which loads new pages for the user.   

Inside of the Controller we have a manager, Mediator Pattern, two data source structures, Proxy 

Pattern, and a display structure.  The manager (Interface_Manager) controls the flow of information 

between the model and the view.  The mediator controls the communication between the two data source 

structures by relaying their status to the system and providing useful information from the system.  The 

proxy (data source structures) creates a binding between the Server Interface and the display structure.  

The display structure (Organized_DS) stores and organizes the data retrieve from the proxy, which is 

inside the Model package. 

 

*See Appendix E for minimal class diagram 

 

6.3. Dynamic Model 
The state diagram describes how everything in the system revolves around the CVM Display 

control.  The state machine represents the state of the Controller from the MVC architecture. We have the 

Session Time Out tide to the Logout which leads to a final state.  The search done by the user will trigger 

a query, which can send a bad status, sending the system into the CVM Display control to try again.  If 

the query is successful depending on which is the next query, the system will continue to query items.  

Once all queries are done, the information is sent to be displayed, which once displayed, will return 

control to the CVM Display control. 

 
*See Appendix E for state machine 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

35 
 

Algorithm: 
 
The main algorithm used in the system is a Depth First Search. It was implemented using an Adjacency 

Matrix, which makes the runtime O (V2). 

 
Figure 8: Data Retrieval and Compilation 

Once the patients information has being retrieved and compiled into a graph. The algorithm is used to 

traverse the graph and make calls to print the nodes information into a XML file. Given a root index (i.e. 

Lab Results) the depth first search will traverse the tree and print each of the children’s of lab result. 

 

 

 
Figure 9: Lab Results Tree 

 
 
 
 
 



 

36 
 

 
 
6.4 Code Specification 
Interface Manager 
 In the Client Interface the main control object is the Interface Manager.  This object controls the 

flow of information between the user interface and the business services aspect of the application.  It 

executes functions in a timely manner through the use of instantiated objects, which help control the 

application's flow of information. 

 The objects use in this object are User_Account, dataMediator, teges, ccd, dsTypes, and 

patientID.   The User_Account is use to control the Session Time Outs of the CVM-M user.  The 

dataMediator is use to create a communication mechanism between the data sources objects.  The teges is 

a structured object, which stores the information extracted from the TegesICU database.  The ccd is a list 

of structured CCD objects, which depending on the amount of CCD data sources will get bigger or 

contained nothing.  The dsTypes object is a TreeMap, which contains a collection of index data sources 

name’s that are use in the system to be able to retrieve necessary parameters for a specific datasource.  

The patientID is use to store a patient ID submitted by the user, so that it can be further process. 

 The functions use in the Interface Manager are the sessionTimeOut, checkProcessStatus, 

retrieveDS_Type, and setPatientID. 

• For the retrievePatients contraints are the following: 

o Pre-Condition: System has started running and the patients have been taking from the 

administration database. 

o Invariants: No patient may have been created at the time of retrieval, probably database 

issues could have occur also that were ignored. 

o Post-Conditions: The list is populated on the dropdown list the window that will link the 

data source to the patient. 

• For the setCVMUser  the constraints are the following: 

o Pre-Condition: The user is in the process of login into the system. 

o Invariants: None 

o Post-Conditions: The information of the user is displayed on the search window. 

 

• For the retrieveDS the constraints are the following: 

o Pre-Condition: User has logged into the system and patient being used must have being 

link to all data sources; were the information, should be pulled from. 

o Invariants: While this function is running the system might be place on hold for a couple 

of seconds, so no process could be executed at this time. 

o Post-Conditions: The health information for the patient has been compile and displayed. 



 

37 
 

• For the findPatient the constraints are the following: 

o Pre-Condition: Patients have been retrieved and store in the system. 

o Invariants: No patients have been taking into the structure, so nothing can be look for. 

o Post-Conditions: A patient has been found and can be either use for processing or be a 

sign to not enter new patients. 

• For the openGeneratedXML the constraints are the following: 

o Pre-Condition: Information about a patient has already been compile and been expanded 

into a XML file. 

o Invariants: Files IO and search errors can come up as the process is going. 

o Post-Conditions: An HTML file is displayed on a reliable HTML browser. 

• For the getPatients the constraints are the following: 

o Pre-Condition: System has started running and the patients have been taking from the 

administration database. 

o Invariants: There could be database errors retrieving the items or patients could not 

exist, since they never were added. 

o Post-Conditions: System can now use this list of patients to perform any kind of search, 

retrieval or update on information, regarding the patients. 

• For the convertToHTML the constraints are the following: 

o Pre-Condition: Information about a patient has already been compile and been exported 

into an XML file. 

o Invariants: A file could not be open, or found.  The conversion came up with errors so 

no HTML document could generate it. The HTML was not save properly. 

o Post-Conditions: The generated HTML file is saved in a folder. 

• For the retrievePatientList the constraints are the following: 

o Pre-Condition: The patients have been retrieved from the administrative database and 

populated into a structure in the system, which are showing a dropdown, user has log in 

into the system. 

o Invariants: The TegesICU database is down, or there was errors retrieving the necessary 

database on the SQL syntax. 

o Post-Conditions: A dropdown list is populated in the window where the TegesICU data 

source is link to the patient. 

 

Source Interface 
 In the Server Interface, the Source Interface in the main control.  This Object will be use 

to control the flow of information between the data sources and the application.  It will retrieve 



 

38 
 

information base on calls send by the system, either by querying or using some other retrieval 

commands. 

 There is only one object call Category, which is use to categorized different parts of the 

query.  All methods pre-conditions are that the Client Interface has initiated a call asking about a 

certain patient existence in the data sources.  There are no invariants in these functions, since 

they don't really alter anything in the system.  All methods post-conditions are that a query from 

multiple data sources has been compile and send back to the Client Interface. 

  



 

39 
 

7. System Validation 

The system being tested is the CVM-Mediator application. For the purpose of this project only the 

following approaches will be use; System Testing and Subsystem testing.  

 

7.1 Subsystem Test 
Features to be tested: the Model package from the model view controller inside the client tier. 

- Cvm.mediator.model.Orginizer 
- Cvm.mediator.model.Graph 
- Cvm.mediator.model.Vertex 
- Cvm.mediator.model.MakeXML 
- Cvm.mediator.model.CreateStandardGraph 
- Cvm.mediator.model.CreateCCDHealthVault 
- Cvm.mediator.model.CreateCCDTeges 
- Cvm.mediator.model.GraphDFS 

Only three test cases were needed to test the subsystem.  The organizer class execute all the require 
procedures to compile the data. To test if the data was compiled we checked to see if the compiled file 
was created. In order to test if the Graph had added the correct number of nodes, the size of the graph was 
printed in every test case. 
 
Test cases: 
7.2 System Tests 
This section contains the test cases used to test and validate the CVM-Mediator. To test the system, the 

user’s scenarios were used to test for errors. The system test will test if the system meets with the 

requirements defined in the requirements document.   

 

Test Cases:  

 

Test Case ID CVM-M-Login-SD-01 

Purpose To test  if a user is able to log in with an existing account 

Test Setup The CVM-M application is running 

The login interface is being displayed 

User: “dr john” Password: “access”. Exist 

Test Inputs User enters in the: 

Username box: “drjohn” 

Password box: “access” 

User click the “Login” Button 

Expected Output User is logged into the system 



 

40 
 

 

Test Case ID CVM-M-Login-SD-02 

Purpose To test if a user is able to log in with an existing account that was just created. 

Test Setup The CVM-M application is running 

The login interface is being displayed 

User Creates an account (see Manual for create account) 

Account Created: 

Username: “jan345” 

Password: “j6789” 

Test Inputs User enters in the: 

Username box: “jan345” 

Password box: “j6789” 

User clicks the “Login” button 

Expected Output User is logged into the system 

 

 

Test Case ID CVM-M-Login-RD-01 

Purpose To test the system allows non-existing user to  log in 

Test Setup The CVM-M application is running 

The login interface is being displayed 

User: “nurseJoy” Password: “n789654”. Does not exist  

Test Inputs Enter in the : 

Username box: “nurseJoy” 

Password box: “n789654” 

User clicks the “Login” button 

Expected Output A message is display”The username or password is not valid” 

 

 

 

 

 

 

 

 



 

41 
 

 

Test Case ID CVM-M-Create Login-SD-01 

Purpose To test is the system allows the creation of a new login account of a DOCTOR user 

that does not exist 

Test Setup The CVM-M application is running 

The login interface is being displayed 

Click on the “File” menu and click on “Create Account” 

Create account interface is displayed 

Test Inputs User enters the following data in the Create Account fields: 

Username: gwen 

Password: ascalon 

Confirm: ascalon 

Email: gwen@gmail.com 

Question:  name a fort 

Answer: evonhacke 

Type: Doctor 

User clicks “Create” button 

Expected Output Account is created, and the create account interface closes 

 

Test Case ID CVM-M-Create Login-SD-02 

Purpose To test is the system allows the creation  of a new login account of a NURSE user 

that does not exist 

Test Setup The CVM-M application is running 

The login interface is being displayed 

Click on the “File” menu and click on “Create Account” 

Create account interface is displayed 

Test Inputs User enters the following data in the Create Account fields: 

Username: test1 

Password: t123456 

Confirm: t123456 

Email: test1@gmail.com 

Question: test subject name 

Answer: test1 

Type: Nurse 

mailto:gwen@gmail.com�
mailto:test1@gmail.com�


 

42 
 

User clicks “Create” button 

Expected Output Account is created, and the create account interface closes 

 

Test Case ID CVM-M-Create Login-RD-01 

Purpose To test if the system allows the creation of a new login account of a user that 

already exist. 

Test Setup The CVM-M application is running 

The login interface is being displayed 

Click on the “File” menu and click on “Create Account” 

User with username: gwen password: ascalon already exists 

Create account interface is displayed 

Test Inputs User enters the following data in the Create Account fields: 

Username: gwen 

Password: ascalon 

Confirm: ascalon 

Email: gwen@gmail.com 

Question:  name a fort 

Answer: evonhacke 

Type: Doctor 

User clicks “Create” button 

Expected Output User account cannot be created and user is informed that username already exist. 

 

 

Test Case ID CVM-M-Mask Password-SD-01 

Purpose To test if when users enter their password. The password is masked 

Test Setup The CVM-M application is running 

The login interface is being displayed 

User: “drjames” Password: “access1”. Exist 

Test Inputs User enters in the: 

Username box: “drjames” 

Password box: “access1” 

Expected Output Password is masked. 

 

 

mailto:gwen@gmail.com�


 

43 
 

 

 

Test Case ID CVM-M-Mask Password-SD-02 

Purpose To test if when users enter their password. The password is masked  on a newly 

created account 

Test Setup The CVM-M application is running 

The login interface is being displayed 

User Creates an account (see Manual for create account) 

Account Created: 

Username: “john345” 

Password: “j9876” 

Test Inputs User enters in the: 

Username box: “john345” 

Password box: “j9876” 

Expected Output Password is masked. 

 

Test Case ID CVM-M-Forgot Password-SD-01 

Purpose To test is a user is able to retrieve its password on an existing account of a Doctor 

Test Setup The CVM-M application is running 

The login interface is being displayed 

Click on the “File” menu and click on “Forgot Password” 

Forgot password interface is display 

Test Inputs User Enters  

Email: drjohn456@yahoo.com 

When Secret Question is displayed interface is displayed 

Test Case ID CVM-M-Mask Password-RD-01 

Purpose To test if password is masked with a user that does not exist 

Test Setup The CVM-M application is running 

The login interface is being displayed 

Test Inputs Enters 

Username box:  “mask1” 

Password box: “m123456” 

Expected Output Password is masked. 

mailto:drjohn456@yahoo.com�


 

44 
 

User enters  

Answer: totalaccess 

Expected Output User’s password is displayed. 

 

Test Case ID CVM-M-Forgot Password-SD-02 

Purpose To test is a user is able to retrieve its password on an existing account of a Nurse 

Test Setup The CVM-M application is running 

The login interface is being displayed 

Click on the “File” menu and click on “Forgot Password” 

Forgot password interface is display 

Test Inputs User Enters  

Email: nurse@yahoo.com 

When Secret Question is displayed interface is displayed 

User enters  

Answer: whataccess 

Expected Output User’s password is displayed. 

 

 

Test Case ID CVM-M-Forgot Password-RD-01 

Purpose To test users are able to retrieve a password of an account that does not exist. 

Test Setup The CVM-M application is running 

The login interface is being displayed 

Click on the “File” menu and click on “Forgot Password” 

Forgot password interface is display 

Test Inputs User Enters: 

Email: nouser@gmail.com 

Expected Output A message is display “No user had email: nouser@gmail.com” 

 

 

Test Case ID CVM-M-Query Information-SD-01 

Purpose To test is the system allows to search an existing patient 

Test Setup The CVM-M application is running 

Test Inputs Patient ID: 12345 is entered 

Click on “Search” button 

mailto:nurse@yahoo.com�
mailto:nouser@gmail.com�


 

45 
 

Expected Output Patient health information is retrieved and displayed 

 

Test Case ID CVM-M-Query Information-SD-02 

Purpose To test is the system allows to search an existing patient that is not linked to the 

Teges Database 

Test Setup The CVM-M application is running 

Patient ID: 54321 is not linked to the Teges Database 

Test Inputs Patient ID: 54321 is entered 

Click on “Search” button 

Expected Output Patient health information is retrieved and displayed 

 

Test Case ID CVM-M-Query Information-RD-01 

Purpose To test is the system allows to search an non-existing patient 

Test Setup The CVM-M application is running 

Test Inputs Patient ID: wrongID is entered 

Click on “Search” button 

Expected Output Message is displayed “User Does not Exist in the System” 

 

Test Case ID CVM-M-Compile Information-SD-01 

Purpose To test is data is compiled, when a doctor is logged on the system 

Test Setup The CVM-M application is running 

User “drjohn” is logged onto the system 

Test Inputs Patient ID: 12346 is entered 

Click on “Search” button 

Expected Output Patient health information is compiled and displayed 

 

Test Case ID CVM-M-Compile Information-SD-02 

Purpose To test is data is compiled, when a nurse is logged on the system 

Test Setup The CVM-M application is running 

User “nurse1” is logged onto the system 

Test Inputs Patient ID: 54326 is entered 

Click on “Search” button 

Expected Output Patient health information is compiled and displayed 



 

46 
 

 

 

Test Case ID CVM-M-Compile Information-RD-01 

Purpose To test is data is compiled, when patient Id does not exist 

Test Setup The CVM-M application is running 

Test Inputs Patient ID: 963258 is entered 

Click on “Search” button 

Expected Output Message is displayed “User Does not Exist in the System” 

 

Test Case ID CVM-M- Display Compile Information-SD-01 

Purpose To test is the System displays compiled information when a doctor is logged on the 

system 

Test Setup The CVM-M application is running 

User “drjohn” is logged onto the system 

Patient  Id: “patient1” exists and was entered in the patient Id textbox 

Test Inputs Clicks on Search button. 

Expected Output Patients Health Records are displayed 

 

 

Test Case ID CVM-M- Display Compile Information-SD-02 

Purpose To test is the System displays compiled information when a Nurse is logged on the 

system 

Test Setup The CVM-M application is running 

User “nurse1”is logged onto the system 

Patient  Id: “patient2” exists and was entered in the patient Id textbox 

Test Inputs Clicks on Search button. 

Expected Output Patients Health Records are displayed 

 

Test Case ID CVM-M- Display Compile Information-RD-01 

Purpose To test is Compiled Information is displayed when user does not exist, and a nurse 

is logged on the system. 

Test Setup The CVM-M application is running 

User “nurse1”is logged onto the system 



 

47 
 

Patient  Id: “patient3” does not exists and was entered in the patient Id textbox 

Test Inputs Clicks on Search button. 

Expected Output A message is prompted “User Does not Exist in the System.” 

 
Test Case ID CVM-M- Logout-SD-01 

Purpose To test is users type doctor are able to log out 

Test Setup The CVM-M application is running 

User “drjohn”is logged onto the system 

Clicks on “Logout” button. 

A message is displayed “Do you really want to Disconnect?” 

Test Inputs Clicks on “Yes” button. 

Expected Output User is disconnected, and the login interface is displayed. 

 
Test Case ID CVM-M- Logout-SD-02 

Purpose To test if users type nurse are able to log out 

Test Setup The CVM-M application is running 

User “nurse1”is logged onto the system 

Clicks on “Logout” button. 

A message is displayed “Do you really want to Disconnect?” 

Test Inputs Clicks on “Yes” button. 

Expected Output User is disconnected, and the Login interface is displayed. 

 
 
Test Case ID CVM-M- Logout-RD-01 

Purpose To test if system logs you out if the user cancels the confirmation 

Test Setup The CVM-M application is running 

User “nurse1”is logged onto the system 

Clicks on “Logout” button. 

A message is displayed “Do you really want to Disconnect?” 

Test Inputs Clicks on “No” button. 

Expected Output User is not disconnected and the confirmation dialog goes away. 

 
 
 
 
 
 



 

48 
 

 
 
 
 
7.3 Evaluation of Test 
Subsystem test cases were performed using the JUnit Tester. The coverage tool used was EclEmma – java 

code coverage for Eclipse.  

Subsystem Test cases results: 
Test Case ID Expected Output Pass Fail 

CVM-M-Compile Data-SD-01 Data is compiled, and the data was written to a file X  
CVM-M-Compile Data-SD-02 Data is compiled, and the data was written to a file X  
CVM-M-Compile Data-RD-01 The File is created, but will only have 15 vertexes. X  
 
 
The Model package line code coverage was 95.4%  

 
Figure 10: Model Package Coverage 

 

System test cases were performed manually. 

System Test cases results: 
Test Case ID Expected Output Pass Fail 

CVM-M-Login-SD-01 User is logged into the system X  
CVM-M-Login-SD-02 User is logged into the system X  
CVM-M-Login-RD-01 A message is display “The username or password is 

not valid” 
X  

CVM-M-Create Login-SD-01 Account is created, and the create account interface 
closes 

X  

CVM-M-Create Login-SD-02 Account is created, and the create account interface 
closes 

X  

CVM-M-Create Login-RD-01 User account cannot be created and user is informed 
that username already exist. 

 X 

CVM-M-Mask Password-SD-01 Password is masked. X  
CVM-M-Mask Password-SD-02 Password is masked. X  



 

49 
 

CVM-M-Mask Password-RD-01 Password is masked. X  
CVM-M-Forgot Password-SD-01 User’s password is displayed. X  
CVM-M-Forgot Password-SD-02 User’s password is displayed. X  
CVM-M-Forgot Password-RD-
01 

A message is display “No user had email: 
nouser@gmail.com” 

X  

CVM-M-Query Information-SD-
01 

Patient health information is retrieved and displayed X  

CVM-M-Query Information-SD-
02 

Patient health information is retrieved and displayed X  

CVM-M-Query Information-
RD-01 

Message is displayed “User Does not Exist in the 
System” 

X  

CVM-M-Compile Information-
SD-01 

Patient health information is compiled and displayed X  

CVM-M-Compile Information-
SD-02 

Patient health information is compiled and displayed X  

CVM-M-Compile Information-
RD-01 

Message is displayed “User Does not Exist in the 
System” 

X  

CVM-M- Display Compile 
Information-SD-01 

Patients Health Records are displayed X  

CVM-M- Display Compile 
Information-SD-02 

Patients Health Records are displayed X  

CVM-M- Display Compile 
Information-RD-01 

A message is prompted “User Does not Exist in the 
System.” 

X  

CVM-M- Logout-SD-01 User is disconnected, and the Login interface is 
displayed. 

X  

CVM-M- Logout-SD-02 User is disconnected, and the Login interface is 
displayed. 

X  

CVM-M- Logout-RD-01 User is not disconnected and the confirmation dialog 
goes away. 

X  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

50 
 

 
 
 

8. Glossary 
 
Compile Information: Information that is manage, resource, and collected by the system. 

CVM-M:  Communication Virtual Machine-Mediator, is a system that translate different data sources 

into usable schema for displaying. 

CVM-M Interface:  Control Page where CVM-M user will request the task that the system will get 

assign to. 

CVM-M User: Is the Entity that request information from the system. 

Data Source: The repository that contains information of a medical record that is use in a system 

File System a system of classifying into files (usually arranged alphabetically). 

Google Chrome:  Is a web browser developed by Google that uses the WebKit layout engine and 

application framework.  It was first released as s beta version for Microsoft Windows. (Google Chrome). 

GUI (Graphical User Interface) : Allows users to interact with programs in more ways than typing such 

as computers. A GUI offers graphical icons, and visual indicator, as opposed to text-bases interfaces, 

typed command labels or text navigation to fully represent the information and actions available to a user. 

(Graphical user interface). 

Java:  is a programming language originally developed by James Gosling at Sun Microsystems (which is 

now a subsidiary of Oracle Corporation) and released in 1995 as a core component of Sun Microsystems' 

Java platform. The language derives much of its syntax from C and C++ but has a simpler object model 

and fewer low-level facilities. (Java) 

JVM (Java Virtual Machine) enables a set of computer software programs and data structures to use a 

virtual machine model for the execution of other computer programs and scripts. The model used by a 

JVM accepts a form of computer intermediate language commonly referred to as Java byte code. This 

language conceptually represents the instruction set of a stack-oriented, capability architecture. (Java 

Virtual Machine). 

Microsoft HealthVault:  Is a platform from Microsoft to store and maintain health and fitness 

information.  Started in October 2007, the website is accessible at www.healthvault.com.  HealthVault 

record stores an individual’s health information.  Access to a record is through a HealthVault account, 

which may be authorized to access for multiple individuals. (Microsoft HealthVault). 

Mediator Design Pattern:  One of 23 design patterns described in Design Patterns: Elements of 

Reusable Object oriented Software, provides a unified interface to a set of interfaces in a subsystem.  This 

pattern is considered to be a behavioral pattern due to the way it can alter the program’s running behavior. 

(Mediator pattern)   

http://www.healthvault.com/�


 

51 
 

Medical Record: Is an item in the form of a written or electronic document that shows information about 

a particular person’s health diagnosis. 

Mozilla Firefox:  Is a free and open source web browser descended from the Mozilla Application Suite 

and manage by Mozilla Corporation. (Mozilla Firefox). 

Proxy Design Pattern: A proxy, in its most general form, is a class functioning as an interface to 

something else.  The proxy could interface to anything: a network connection, a large object in memory, a 

file, or some other sources that is expensive or impossible to duplicate. (Proxy pattern) 

Query Information: Task that CVM-M User assigns to system to compile information. 

SDK (Software Development Kit):  Is typically a set of development tools that allows for the creation of 

applications for certain software package, software framework, hardware platform, computer system or 

similar platform. (Software development kit).   

Session Time-Out: Times the amount of time a CVM-M User is kept alive while idle. 

SQL (Structured Query Language) a worldwide standard used to manage data in relational databases. 

SQL facilitates the sharing of data especially in large and interconnected databases. (SQL). 

System: The entity that takes care of all the CVM-M User input requests and return outputs base on these 

requests. 

TegesICU:  A system used in Miami Children Hospital for internal medical information. 

Temporary Storage: Space used to store compile information while system is processing. 

USDP (Unified Software Development Process): The USDP or Unified Process is a popular 

incremental software development process framework.  The Unified Process is not simply a process, but 

rather an extensible framework which should be customized for a specific organizations or projects. 

(Unified Process). 

 

UML (Unified Modeling Language) is an open method used to specify, visualize, construct and 

document the artifacts of an object-oriented software-intensive system under development. It is typically 

used in large development teams as a bridge between process models and software development. Good 

process modeling tools can output the information required to develop the services required to UML, so 

that the development team can import the information directly into their software development tools. 

Some developers insist of hand crafting the UML and ignoring process inputs. However, despite their 

claims, it cannot replace process modeling to define business processes effectively. (Unified Modeling 

Language). 

XML (Extensible Markup Language) is a set of rules for encoding documents electronically. It is 

defined in the produced by the W3C and several other related specifications; all are fee-free open 

standards. (XML) 

XML Schema is a way to define and validate the XML file. 

  



 

52 
 

 
9. References 
 

“Proxy”.  .NET Design Pattern and Architecture.  n.d.  Web.  October 28, 2010.  

http://www.dofactory.com/Patterns/PatternProxy.aspx.  

“Mediator”.  NET Design Pattern and Architecture.  n.d.  Web.  October 28, 2010.  

http://www.dofactory.com/Patterns/PatternMediator.aspx. 

“Mediator pattern”.  Wikipedia.  October 17, 2010.  Web.  October 28, 2010.  

http://en.wikipedia.org/wiki/Mediator_pattern. 

“Proxy pattern”.  Wikipedia.  October 24, 2010.  Web.  October 28, 2010.  

http://en.wikipedia.org/wiki/Proxy_design_pattern. 

“XML”.  Wikipedia.  October 26, 2010.  Web. October 28, 2010.  http://en.wikipedia.org/wiki/Xml. 

“Unified Modeling Language”.  Wikipedia.  October 28, 2010.  Web. October 28, 2010.  

http://en.wikipedia.org/wiki/Unified_Modeling_Language#Overview. 

“Java Virtual Machine”.  Wikipedia.  October 24, 2010.  Web.  October 28, 2010.  

http://en.wikipedia.org/wiki/JVM. 

“SQL”.  Wikipedia.  October 24, 2010.  Web.  October 28, 2010.  http://en.wikipedia.org/wiki/SQL. 

“Graphical user interface”.  Wikipedia.  October 27, 2010.  Web.  October 28, 2010.  

http://en.wikipedia.org/wiki/GUI. 

“Java (programming language)”.  Wikipedia.  October 25, 2010.  Web.  October 28, 2010.  

http://en.wikipedia.org/wiki/Java_(programming_language). 

“Unified Process”.  Wikipedia.  September 20, 2010.  Web.  October 29, 2010.  

http://en.wikipedia.org/wiki/Unified_Software_Development_Process. 

Olmos, Ivan, et al.  “CVM Mediator Deliverable 2”.  BS senior project.  Florida International University, 

2010. 

“Microsoft HealthVault”.  Wikipedia.  August 13, 2010.  Web.  October 29, 2010.  

http://en.wikipedia.org/wiki/Microsoft_HealthVault. 

“Software development kit”  Wikipedia.  October 11, 2010.  Web.  October 29, 2010.  

http://en.wikipedia.org/wiki/SDK. 

“Mozilla Firefox”.  Wikipedia.  October 31, 2010.  Web.  October 31, 2010.  

http://en.wikipedia.org/wiki/Firefox. 

“Google Chrome”.  Wikipedia.  October 31, 2010.  Web.  October 31, 2010.  

http://en.wikipedia.org/wiki/Google_chrome. 

“Java”.  Wikipedia. October 25, 2010.  Web.  October 31, 2010.  

http://en.wikipedia.org/wiki/Java_(programming_language). 

http://www.dofactory.com/Patterns/PatternProxy.aspx�
http://www.dofactory.com/Patterns/PatternMediator.aspx�
http://en.wikipedia.org/wiki/Mediator_pattern�
http://en.wikipedia.org/wiki/Proxy_design_pattern�
http://en.wikipedia.org/wiki/Xml�
http://en.wikipedia.org/wiki/Unified_Modeling_Language#Overview�
http://en.wikipedia.org/wiki/JVM�
http://en.wikipedia.org/wiki/SQL�
http://en.wikipedia.org/wiki/GUI�
http://en.wikipedia.org/wiki/Java_(programming_language)�
http://en.wikipedia.org/wiki/Unified_Software_Development_Process�
http://en.wikipedia.org/wiki/Microsoft_HealthVault�
http://en.wikipedia.org/wiki/SDK�
http://en.wikipedia.org/wiki/Firefox�
http://en.wikipedia.org/wiki/Google_chrome�
http://en.wikipedia.org/wiki/Java_(programming_language)�


 

53 
 

Clarke, Peter J. Evolution of Software Design, Overview of MDSD.  Class Lecture.  CEN 

5064/4021.  Florida International University, Miami, FL. January 2009. 

 
“HealthVault Information Site Service Agreement.”  Microsoft® HealthVault™.  August 2009.  Web.  
November 29, 2010.  https://www.healthvault.com/terms-of-use.aspx. 
 
“Privacy Policy”.  Teges™ i-Rounds™.  Web.  November 29, 2010.  
https://irounds.mch.com/tegesICU/privacypolicy.html. 
 
“JAXB”.  GlassFish.  November 27, 2010.  Web.  December 2, 2010.  https://jaxb.dev.java.net/ 
 
“xpp3 1.1.4c.jar”.  12 Demo Source and Support.  Web.  December 2, 2010.  
http://www.java2s.com/Code/Jar/STUVWXYZ/Downloadxpp3114cjar.htm. 
 
“Microsoft® SQL Server JDBC Driver 3.0”.  Microsoft®.  Web.  December 2, 2010.  
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=a737000d-68d0-4531-b65d-
da0f2a735707&displaylang=en. 
 
“SQLite Download Page”.  SQLite.  Web.  December 2, 2010.  http://www.sqlite.org/download.html. 
 
“SqliteJDBC”.  Zentus.  Web.  December 2, 2010.  http://www.zentus.com/sqlitejdbc/. 
 
“JCom(Java-COM Bridge)”.  Source Forge.  Web.  December 2, 2010.  
http://sourceforge.net/projects/jcom/. 
 
“GNU Lesser General Public License”.  GNU Operating System.  October 9, 2010.  Web.  December 2, 
2010.  http://www.gnu.org/copyleft/lesser.html. 
 
 
“Eclipse Foundation Software User Agreement”.  Eclipse.  April 14, 2010.  Web.  December 5, 2010.  
http://www.eclipse.org/legal/epl/notice.php. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

https://www.healthvault.com/terms-of-use.aspx�
https://irounds.mch.com/tegesICU/privacypolicy.html�
https://jaxb.dev.java.net/�
http://www.java2s.com/Code/Jar/STUVWXYZ/Downloadxpp3114cjar.htm�
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=a737000d-68d0-4531-b65d-da0f2a735707&displaylang=en�
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=a737000d-68d0-4531-b65d-da0f2a735707&displaylang=en�
http://www.sqlite.org/download.html�
http://www.zentus.com/sqlitejdbc/�
http://sourceforge.net/projects/jcom/�
http://www.gnu.org/copyleft/lesser.html�
http://www.eclipse.org/legal/epl/notice.php�


 

54 
 

 

10. Appendix 
10.1 Appendix A - Project schedule (Gantt chart or PERT chart). 

 
The following figure describes the work schedule only for the last deliverable. 
 

 
Figure 11: Project Schedule 

 
 
 
 
 
 



 

55 
 

 
10.2 Appendix B – All use cases with nonfunctional requirements. 

 
Use Case ID: CVM-M - HL - 02 - Login 

Use Case Level: High-level 

Details:  

Actor: CVM-M user 

Pre-conditions:  

1. The login window (see Appendix F: Figure 22) has been enabled and display’s properly. 

Description: 

1. Use case begins when CVM-M user enters the following data: user id, and password. 

2. The CVM-M user clicks on the Login button. 

3. The system verifies the logon information. 

4. Use case ends when the CVM- Interface (see Appendix F: Figure 26) is displayed. 

             Relevant requirements: None. 

Post-conditions: 

1. The CMM-M user is logged onto the system.  

Alternative Courses of Action: 

1. In step D.2 (step 2 of Description section) the user has the option to click on the cancel button, 

which will cause the program to close. 

2. In step D.3 if any of the required fields are blank or invalid the system shall request the user to 

input valid data. 

Extensions: None. 

Exceptions: 

1. After the user enters the required data the login button is disabled. 

Related Uses Case: 

CVM-M – SL – 25 – Mask Password 

Concurrent Uses: None. 

  



 

56 
 

 

------------------------------------------------------------------------------------------------------------ 

Decision Support: 

Frequency: On average, 100 are made daily by CVM-M users. 

Criticality: High.  Allows CVM-M users to login to the system 

Risk: Low.  Implementing this use case employs basic java code. 

------------------------------------------------------------------------------------------------------------ 

Constraints: 

1. Usability:   

a) No previous Training Time   

b) On average the user should take 20 seconds to login. 

2. Reliability:   

a) Mean time to Failure – 10% failures for every twenty four hours of operation is 

acceptable.  

b) Availability – System should be available all the time except during server 

maintenance.  

3. Performance:  

a) User verification should be done under 1 second. 

b) System should be able to handle 10 requests per second.   

4. Supportability: 

a)  The login page shall be correctly handled by any JVM  

Modification History: 

Owner: Jandry Guerra 

Initiation date: 09/27/10 

Date last modified: 10/01/10 

  



 

57 
 

Use Case ID: CVM-M - HL - 07 - Query Information 

Use Case Level: High-level 

Details:  

Actor: CVM-M user 

Pre-conditions:  

1. The CVM-M user has successfully logged onto the system. 

2. The CVM-M Interface has been displayed. 

Description: 

1. Use case begins when CVM-M user enters the following data: patient id. 

2. Use case ends when the CVM- user clicks on the Search button (see Appendix F: Figure 

26). 

             Relevant requirements: None. 

Post-conditions: 

1. The patient’s data will be query from the database. 

Alternative Courses of Action: 

1. In step D.2 (step 2 of Description section) if the patient’s ID does not exist, the CVM-M user is 

notified. 

Extensions: None. 

Exceptions: 

1. The CVM-M user submitted invalid values. 

Related Uses Case: 

CVM-M – SL – 10 – Compile Information 

Concurrent Uses:  

CVM-M - SL - 14 - Display Progress 

  



 

58 
 

 

------------------------------------------------------------------------------------------------------------ 

Decision Support: 

Frequency: On average, 600 queries are made daily by CVM-M users. 

Criticality: High.  Allows CVM-M users to request patient’s health records  

Risk: Medium.  Implementing this use case requires the knowledge of SQL Syntax 

------------------------------------------------------------------------------------------------------------ 

Constraints: 

1. Usability:   

a) No previous Training Time   

b) On average the user should take 15 seconds to request patient’s information. 

2. Reliability:   

a) Mean time to Failure – 5% failures for every twenty four hours of operation is 

acceptable.  

b) Availability – System should be available all the time except during server 

maintenance.  

3. Performance:  

a) System shall base query time on the amount of current data sources. 

b) System shall be able to handle 10 requests per second.   

4. Supportability: 

a)  The textbox and search button shall be correctly handled by any JVM.  

Modification History: 

Owner: Jandry Guerra 

Initiation date: 09/26/10 

Date last modified: 10/01/10 

 

 

 

 

 

 

 

 

 

 



 

59 
 

Use Case ID: CVM-M-HL-21 – Forgot Password.  

Use Case Level: High Level 

Details:  

Actor: CVM-M User 

Pre-conditions:  

1. CVM-M User has logged onto the system. 

2. The CVM-M interface is displayed. 

3. Forgot password link was enabled 

Description: 

1. Use case begins when user clicks on the “forgot password” link in the login window (see 

Appendix F: Figure 22). 

2. The system shall provide the user with a new page with the lost password request. 

3. The user shall enter the following data: user email (see Appendix F: Figure 24). 

4. The user clicks submit. 

5. A new dialog is display asking the user a question. 

6. The user enters the answer to a predefine question that was created with the account (see 

Appendix F: Figure 25). 

7. The user shall then send the request by selecting the send button. 

8. System shall confirm that the data that was entered is correct. 

9. When the request is received the system shall generate a new password.   

10. Use case ends when the new password is delivered to the user, and the user is notified. 

Post-conditions: 

1. The new password replaces the old password in the system. 

Alternative Courses of Action: 

1. In step D.5 if the data entered is incorrect, then the system shall not generate a new password and 

will notify the user which data entered was incorrect. 

Extensions: None 

Exceptions: 

1. The “forgot password” link on the web page is not active. 

2. After the user enters the required data the send button is not active. 

3. The data entered may not be on database, and the system might crash. 

Concurrent Uses: None 

Related Uses Case: 

CVM-M - HL - 23 – Create Login 

  



 

60 
 

------------------------------------------------------------------------------------------------------------ 

Decision Support: 

Frequency: On average 1 out of 30 users may request this feature. 

Criticality: High.  If the user forgets his password, the system allows the user to have access to 

his account.   

Risk: Low.  Implementing this use case requires a part of implementation of the GUI. 

------------------------------------------------------------------------------------------------------------ 

Constraints: 

1. Usability:   

a) No previous Training Time   

b) On average the user shall take 3 minutes to complete the send request form. 

c) User friendly. 

2. Reliability:   

a) Mean time to Failure – 5% failure for every twenty four hours of operation is 

acceptable. 

b) Availability – System shall be available all the time except during server 

maintenance.   

3. Performance:  

a) Request shall be sent and saved within 7 seconds.   

b) System shall be able to handle 50 request in 1 minute   

4. Supportability: 

a) The forgot password page shall be correctly handled by any JVM. 

 

Modification History: 

Owner: Luis Bautista. 

Initiation date: 09/15/2010 

Date last modified: 09/27/2010 

  



 

61 
 

Use Case ID: CVM-M-HL-22 – Logout  

Use Case Level: High Level  

Details:  

Actor: CVM-M User 

Pre-conditions:  

4. CVM-M User has logged onto the system. 

5. The CVM-M interface is displayed. 

6. Logout link was enabled. 

Description: 

11. Use case begins when user clicks on the Logout link in the CVM-M interface (see 

Appendix F: Figure 26). 

12. The system shall provide the user with a new interface with Logout confirmation dialog. 

13. The user shall then send the request by selecting: OK or CANCEL. 

14. System shall confirm that the request was sent. 

15. Systems shall logout or disconnect the session if the request is received.   

16. Use case ends when the user is logged out, and the user is notified. 

Post-conditions: 

1. The login page is displayed. 

Relevant Requirements: None 

Alternative Courses of Action: 

2. In step D.3 if the user presses the cancel button, then the system shall not logout the user and 

shall go back to the CVM-M interface. 

Exceptions: 

4. The Logout link on the CVM-M interface is not enabled. 

5. The Logout confirmation dialog won’t pop up. 

6. The OK button in the Logout confirmation dialog is not enabled. 

7. The CANCEL button in the Logout confirmation dialog is not enabled. 

Concurrent Uses: None. 

Related Uses Case: 

CVM-M-SL-17 

  



 

62 
 

 

------------------------------------------------------------------------------------------------------------ 

Decision Support: 

Frequency: This will depend on the amount of users that sign in. On average 500 users may 

request this feature daily. 

Criticality: High.  If the user does not want to continue the service, the system allows the user to 

delete his account.   

Risk: Low. Implementing this use case requires a part of implementation of the GUI. 

------------------------------------------------------------------------------------------------------------ 

Constraints: 

1. Usability: 

a)   No Previous Training Time required. 

2. Reliability:   

a) Mean time to Failure – 5% failures for every twenty four hours of operation is 

acceptable. 

b) Availability – System should be available all the time except during server 

maintenance. 

3. Performance:  

a) Request shall be sent and confirmed within at least 10 seconds.   

b) System shall be able to handle 100 requests in 1 minute.   

4. Supportability: 

a)  The Logout Link shall be correctly handled by any JVM. 

Modification History: 

Owner: Luis Bautista. 

Initiation date: 09/15/2010 

Date last modified: 09/27/2010 

  



 

63 
 

Use Case ID: CVM-M - HL - 23 – Create Login 

Use Case Level: High-level 

Details:  

Actor: CVM-M user 

Pre-conditions:  

1. The login window (see Appendix F: Figure 22) has been activated and displayed 

properly. 

Description: 

1. Use case begins when CVM-M user clicks on the create account link. 

2. The create Login dialog interface is display (see Appendix F: Figure 23). 

3. The CVM-M user enters the following account information data: username, password, 

select a predefined question, question answer, and email.  

4. Use case ends when the CVM-M user clicks on the create button. 

             Relevant requirements: None. 

Post-conditions: 

1. The CMM-M user will be taken back to the login interface to submit his logon 

information. 

2. The number of accounts in the system is increased by one.  

Alternative Courses of Action: 

1. In step D.3 (step 3 of Description section) the user has the option to click on the cancel button, 

which will cause the create account interface to close. 

2. In step D.4 if the submitted information is already in the system, they user will be notify that the 

user is already in the system.  

Extensions: None. 

Exceptions: 

1. After the user enters the required data the create button is not active. 

Related Uses Case: 

CVM-M - HL - 02 – Login 

Concurrent Uses: None. 

  



 

64 
 

 

------------------------------------------------------------------------------------------------------------ 

Decision Support: 

Frequency: On average, 10 accounts are created daily. 

Criticality: High.  Allows CVM-M users to create an account in order to log on the system 

Risk: Low.  Implementing this use case employs basic java code. 

------------------------------------------------------------------------------------------------------------ 

Constraints: 

1. Usability:   

a) No previous Training Time   

b) On average the user shall take 20 seconds to create an account. 

2. Reliability:   

a) Mean time to Failure – 10% failures for every twenty four hours of operation is 

acceptable.  

b) Availability – System shall be available all the time except during server 

maintenance.  

3. Performance:  

a) User verification shall be done under 1 second. 

b) System shall be able to handle 10 requests per second.   

4. Supportability: 

a)  The create login page shall be correctly handled by any JVM.  

Modification History: 

Owner: Jandry Guerra 

Initiation date: 09/26/10 

Date last modified: 10/01/10 

  



 

65 
 

 

Use Case ID: CVM-M-SL-09-Verify Patient  

Use Case Level:  System level end to end 

Details:  

Actor:  CVM-M User 

Pre-conditions:  

1. CVM-M user has logged onto system. 

2. CVM-M user is in CVM-M Interface 

Description:  

1. Use case begins when CVM-M user clicks on Search button (Refer to Use Case ID 

CVM-M-HL-12) 

2. System shall check if the patient exist 

3. Use case ends if system cannot confirm patient or if system can confirm patient. 

Post-conditions: 

1. If patient ID exist, system shall compile information. 

Alternative Courses of Action: 

1. In step 1 of description the user has the option to search for patient ID by clicking the search 

button or to logout by clicking the logout button. 

Extensions:  None. 

Exceptions: 

1. After user types ID  and click the search button nothing happens. 

Concurrent Uses:  None. 

Related Use Cases: CVM-M-HL-07, and CVM-M_SL-08 

  



 

66 
 

 

---------------------------------------------------------------------------------------------------------------------- 

Decision Support: 

Frequency:  On average of 100 request are made daily by user. 

Criticality: High.  User needs to know if patient has any medical history available. 

Risk:  High.  Without user ID information can’t be accessed. 

---------------------------------------------------------------------------------------------------------------------- 

Constraints: 

1. Usability: 

a) Training is not require to use this feature. 

2. Reliabilty: 

a) System should work corrently at least 95% of the time in a 24 hours expand. 

b) System should be available 24 hours a day exept when is being maintained. 

3. Performance: 

a) Request should be handle in less than 5 seconds 

b) System should be able to handle on average of 100 request per day. 

4. Supportablitiy: None 

 

Modification History: 

Owner:   Eduardo Flores 

Initiation date: October 1, 2010 

Date last modified: October 1, 2010 

  



 

67 
 

Use Case ID: CMV-M-SL-10-Compiling Information  

Use Case Level:  System level end to end 

Details:  

Actor:  CVM-M User 

Pre-conditions:  

1. CVM-M user has logged onto system. 

2. CVM-M user is in CVM-M Interface 

Description:  

1. Use case begins when CVM-M user clicks on Search button (Refer to Use Case ID 

CVM-M-HL-12) 

2. System shall start to compile all data sources base on patient ID. 

3. Use case ends when compile information is completely put in temporary storage. 

Post-conditions: 

1. System save information to file. 

Alternative Courses of Action: 

1. In step 2 of description the user has the option to search for ID by clicking search or logout by 

clicking logout button. 

Extensions:  CVM-M-SL-15 

Exceptions: 

1. Information does not get displayed when progress is done. 

2. System doesn’t have access to data sources. 

Concurrent Uses:  CVM-M-SL-13, CVM-M-SL-14 

Related Use Cases: CVM-M-SL-18, CVM-M-SL-11, CVM-M-SL-12, CVM-M-SL-14 

  



 

68 
 

---------------------------------------------------------------------------------------------------------------------- 

Decision Support: 

Frequency:  On average of 100 request are made daily by user. 

Criticality: High.  User needs to know if patient has any medical history available. 

Risk:  High.  This inplements data base searches and saving. 

---------------------------------------------------------------------------------------------------------------------- 

Constraints: 

1. Usability: 

a. Training is not require to use this feature 

2. Reliabilty: 

a. System should work corrently at least 95% of the time in a 24 hours expand. 

b. System should be available 24 hours a day exept when is being maintained. 

3. Performance: 

a. Request should be handle in less than 5 minutes 

b. System should be able to handle on average of 100 request per day. 

4. Supportablitiy: 

a. The system should be able to handle database engine, data file such as documents, 

photos, video, and any window related file. 

 

 

Modification History: 

Owner:   Eduardo Flores 

Initiation date: October 1, 2010 

Date last modified: October 1, 2010 

 

 

 

 

 

 

 

 

 

 

 

 



 

69 
 

Use Case ID: CVM-M-SL-13 Temporary Storage 

Use Case Level: System level end to end 

Details: 
Actor: CVM-M user 

Pre-conditions: 

1. CVM-M user has logged onto system. 

2. CVM-M user is in CVM-M Interface 

Description: 

1. Use case begins when CVM-M user clicks on Search button (Refer to Use Case ID 

CVM-M-HL-12) 

2. System shall temporarily store information while is being compiled, categorize, and 

organize. 

3. Use case ends when CVM-M user has disconnected from the system. 

Relevant Requirements: 

Standard I/O Commands 

Post-conditions: 

1. CVM-M user is out of the system. 

2. Temporary data is no longer available 

Alternative Courses of Action: 
1. In description step 2, the system is retrieving data and structuring it. 

Extensions:  

None 

Exceptions: 
1. The storage system is inaccessible. 

2. Storage location is out of space. 

Concurrent Uses:  

CVM-M-HL-11, CVM-M-SL-16, CVM-M-SL-12, CVM-M-SL-15, CVM-M-SL-14 

Related Use Cases:  

CVM-M-SL-11, CVM-M-SL-12, CVM-M-SL-22 

 

 

 

 

 



 

70 
 

---------------------------------------------------------------------------------------------------------------------- 

Decision Support: 

Frequency: On average 600 request are made daily by CVM-M user. 

Criticality: High, the processes of the system cannot get done. 

Risk: Medium, implementation of file system commands. 

---------------------------------------------------------------------------------------------------------------------- 

Constraints:  
1. Usability: 

a) Training is not require to use this feature 

 
2. Reliability: 

a) Meantime to failure: 2% failure for every 4 Hours of operation is acceptable. 

b) System shall be available 24 hours a day except when is being maintained. 

3. Performance: 

a) System shall be able to handle 50 I/O’s per second. 

b) File access time shall be at least at the speed of a conventional network. 

4. Supportability: 

a) The transferring of files needs a file allocation system. 

Modification History: 

Owner: Ivan Olmos. 

Initiation date: 09/29/2010 

Date last modified: 10/04/2010 

  



 

71 
 

Use Case ID: CVM-M - SL - 14 - Display Progress 

Use Case Level: System level end to end 

Details:  

Actor: CVM-M user 

Pre-conditions:  

1. The CVM-M user has successfully logged onto the system. 

2. The CVM-M Interface has been displayed. 

Description: 

1. Use case begins when CVM-M user clicks on the Search button (see CVM-M – HL – 7 – 

Query Information). 

2. The system displays the progress bar on the interface (see Appendix F: Figure 19) 

3. Use case ends when the patient’s information is compiled and displayed. (see CVM-M – SL – 

6 – Display Information, CVM-M – SL – 10 – Compile Information) 

      Relevant requirements:  

None. 

      Post-conditions: 

1. The information compiled is displayed. 

Alternative Courses of Action: 

1. In step D.2 (step 2 of Description section) if the patient is not found, they progress bar will not be 

display and the user will be notify that the patient does not exist.  

Extensions: None. 

Exceptions: 

2. The progress bar is not visible. 

Related Uses Case: 

            CVM-M – HL – 07 – Query Information 

            CVM-M – SL – 10 – Compile Information 

Concurrent Uses: 

CVM-M – HL – 11, CVM-M-SL-16, CVM-M-SL-12, CVM-M-SL-15, CVM-M-SL-13 

  



 

72 
 

 

------------------------------------------------------------------------------------------------------------ 

Decision Support: 

Frequency: On average, the progress bar will be display 600 times daily. 

Criticality: Medium.  Gives users a time estimate of how long it will take. 

Risk: Low.  Implementing this use case employs basic java code. 

------------------------------------------------------------------------------------------------------------ 

Constraints: 

1. Usability:   

a. No previous Training Time   

2. Reliability:   

a. Mean time to Failure – 10% failures for every twenty four hours of operation is 

acceptable.  

b. Availability – System should be available all the time except during server 

maintenance.  

3. Performance:  

a. System should be able to handle 50 requests per hour.   

4. Supportability: 

a.  The Display Progress windows shall be correctly handled by any JVM. 

Modification History: 

Owner: Jandry Guerra 

Initiation date: 10/01/10 

Date last modified: 10/01/10 

  



 

73 
 

Use Case ID: CVM-M-SL-15-Compiling and Sorting Exceptions 

Use Case Level:  System level end to end 

Details:  

Actor:  CVM-M User 

Pre-conditions:  

1. The CVM-M user has successfully logged onto the system. 

2. The CVM-M Interface has been displayed. 

Description:  

1. Use case begins when CVM-M user clicks on Search button (Refer to Use Case ID CVM-M-

HL-12) 

2. System shall report any exceptions that are found while compiling, categorizing and sorting 

the information. 

3. Use case end when data errors is thrown or compile data is displayed. 

Post-conditions: 

1. If system throws an error, it should go back to search for ID page. 

2. If system find ID, it should continue to compile. 

Alternative Courses of Action:  

None 

Extensions:   

None. 

Exceptions: 

1. Error does not display when exception is throwned. 

Concurrent Uses:   

CVM-M-SL-10, CVM-M-SL-11, CVM-M-SL-12, CVM-M-SL-13 

Related Use Cases:  

CVM-M-SL-10, CVM-M-SL-16 

  



 

74 
 

 

---------------------------------------------------------------------------------------------------------------------- 

Decision Support: 

Frequency:  On average of 100 request are made daily by user. 

Criticality: High.  The purpose of system is to have data sources available to the user. 

Risk:  High. Accessing many different data sources 

Constraints: 

1. Usability: 

a) Training is not require to use this feature. 

 

2. Reliabilty: 

a) System shall work corrently at least 95% of the time in a 24 hours expand. 

b) System shall be available 24 hours a day exept when is being maintained. 

3. Performance: 

a) System shall throw exceptions within 2 seconds after occuring. 

4. Supportablitiy: 

a) The Exception window shall be correctly handle by any JVM. 

 

Modification History: 

Owner:   Eduardo Flores 

Initiation date: October 1, 2010 

Date last modified: October 1, 2010 

  



 

75 
 

Use Case ID: CVM-M-SL-16 Display Compile Information 

Use Case Level: System level end to end 

Details: 

Actor: CVM-M user 

      Pre-conditions: 
1. CVM-M user has logged onto system. 

2. CVM-M user is in CVM-M Interface 

Description: 
1. Use case begins when CVM-M user clicks on Search button (Refer to Use Case ID CVM-M-

HL-12) 

2. System shall display compile information to the CVM-M user by following an XML schema 

determine by the system. 

3. Use case ends when CVM-M user has seen the information on the user interface (see 

Appendix F: Figure 29) 

Relevant Requirements: 

XML Markup Language 

Post-conditions: 
1. The information is been look at, by the CVM-M user. 

2. The information is been display to CVM-M user 

Alternative Courses of Action:  

None 

Extensions:  

None 

Exceptions: 
1. The information to be display was not properly match to the XML schema 

Concurrent Uses:  

None 

Related Use Cases: 

 CVM-M-SL-12 

  



 

76 
 

---------------------------------------------------------------------------------------------------------------------- 

Decision Support: 

Frequency: On average 100 request are made daily by CVM-M user. 

      Criticality: High, the task of the system cannot be finalized 

      Risk: Medium, implementing this use case requires the use of XML 

---------------------------------------------------------------------------------------------------------------------- 

Constraints:  
1. Usability: 

a) Training is not require to use this feature 

b) A help file should be available to describe the information been displayed. 

2. Reliability: 

a) Meantime to failure: 10% failure for every 24 Hours of operation is acceptable. 

b) System shall be available 24 hours a day except when is being maintained. 

3. Performance: 

a) System shall take no longer than 30 seconds to layout information being display to the 

CVM-M user. 

4. Supportability: 

a) The display of the information needs a control that can read and layout XML data  

Modification History: 

Owner: Ivan Olmos. 

Initiation date: 09/29/2010 

Date last modified: 10/04/2010 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

77 
 

Session Time Out Use Case (CVM-M-SL-17) 

Session Time Out is way to keep unauthorized user s out of the system when the user session in 

idle for a extensive amount of time 

• Use Case Path – Unauthorized user takes control of user session. 

• Use Case Path – Authorized user is no longer able to logon to system 

Use Case: Session Time Out 

Use Case Path: Unauthorized user takes control of user session. 

Security Threat: 

The system continues to perform task after user leaves the station, meaning that an unauthorized user took 

over the session. 

Preconditions: 

1)  The user forgot to logoff system. 

2)   No mechanism exist to close session while is not been used. 

User Interactions Misuser Interactions System Interactions System Action 

  System shall have a 

system that checks for 

session inactivity 

 

User forgets to log off 

the system 

The misuser, which is 

an unauthorized user 

takes over the session. 

 System shall prevent 

misuser from using a 

session that is not 

authorized 

    

Post conditions: 

1)  The System shall have reacted to misuse interaction immediately, so that no unauthorized user could 

get access to the open session. 

2)  The System shall not have let unauthorized user take control of the session. 

  



 

78 
 

Use Case: Session Time Out 

Use Case Path: Authorized user is no longer able to logon to system 

Security Threat: 

Authorized user credentials are changed, so that the user cannot get back into the system.  System will be 

compromised given it a status of insecure 

Preconditions: 

1)  Authorized user credentials changed. 

2)  System is unaware of vulnerability. 

User Interactions Misuser Interactions System Interactions System Action 

  System shall have a 

system that checks for 

session inactivity 

 

User cannot logon with 

the proper credentials 

  System shall deactivated 

user account after a 

number of unsuccessful 

logins. 

 Misuser, which is an 

unauthorized user takes 

over the session and 

changes the logon 

credentials. 

 System shall ask for old 

password before 

changing logon 

credentials 

    

Post conditions: 

1)  The System shall have reacted to misuse interaction immediately, so that no unauthorized user could 

get access to the open session. 

2)  The System shall have notified user of change of password. 

 
  



 

79 
 

 
10.3 Appendix C – User Interface designs 

 

 
Figure 12: Login Screen 

 



 

80 
 

 
Figure 13: Create Account 

 
 
 
 



 

81 
 

 
Figure 14: Forgot Password Step 1 

 

 
Figure 15: Forgot Password Step 2 



 

82 
 

 

 
Figure 16: Forgot Password Step 3 

 
Figure 17: CVM-M Interface 



 

83 
 

 
Figure 18: Create Patient ID 

 
 

 
Figure 19: Create Patient ID Interface 

 
 
 



 

84 
 

 
Figure 20: Layouts Selection 

 
 



 

85 
 

 
Figure 21: Patient Search 

 



 

86 
 

 
Figure 22: Display Information 

 
 



 

87 
 

 
Figure 23: Logout 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

88 
 

 
10.4 Appendix D – Analysis models (static and dynamic) 

 

 
Figure 24 - Login Sequence Diagram 

Description: 
The Login Sequence Diagram shows the process that the system goes through when a user attempts to login onto the CVM-M Interface.  
  

Login Button
<<boundary>>

Login Manager
<<control>>

Database
<<entity>>

 : CVM-M User

CVM-M Interface
<<entity>>

1 : Login() 2 : authenticateLogin()

3 : retreiveUserAccount()

4 : sendLoginInfo

5 : setStatus()

6 : redirect()

7 : errorMessage



 

89 
 

 
Figure 25 - Logout Sequence Diagram 

Description: 
The Logout Sequence Diagram shows the process that the system goes through when a user attempts to logout to the CVM-M Interface.  
  

 : CVM-M User

Logout Button
<<boundary>>

Interface Manager
<<control>>

Login Page
<<entity>>

1 : Logout()
2 : validateLogout()

3 : setStatus()

4 : redirect()



 

90 
 

 

 
Figure 26 - Forgot Password Sequence Diagram 

Description: 
The Forgot Password Sequence Diagram shows the process that the system goes through when a user forgets his password and attempts to recover 
it.  
  

 : CVM-M User

Forgot Password Link
<<boundary>>

Lost Password Page
<<entity>>

Database
<<entity>>

Account Manager
<<control>>

1 : forgotPassword()
2 : redirect()

3 : SubmitAnswer()

4 : processInformation()

5 : executeQuery()

6 : validateUser()

7 : notifyuser



 

91 
 

 
Figure 27 -  Create Login Sequence Diagram 

Description: 
The Create Login Sequence Diagram shows the process that the system goes through when a new user attempts to create a login account.  
  

 : CVM-M User
Create Login Link
<<boundary>>

Create Login Page
<<entity>>

Database
<<entity>>

Account Manager
<<control>>

1 : createLogin()
2 : redirect()

3 : submitUserInfo()

4 : processInformation()

5 : executeQuery()

6 : createUser()

7 : notifyUser



 

92 
 

 

Figure 28 - Query Sequence Diagram 

Description: 
The Query Information Sequence Diagram shows the process that the system goes through when a new query is submitted.  
  

 : CVM-M User

Patient Search Button
<<boundary>>

Database
<<entity>>

Interface Manager
<<control>>

1 : search()
2 : submitSearch()

3 : sendPatientID()

4 : sendStatus
5 : displayStatus()



 

93 
 

 
Figure 29 - Compile Information Sequence Diagram 

Description: 
The Compile Information Sequence Diagram shows the process that the system goes through when the information been query is compiled.  
  

 : CVM-M User

Patient Search Button
<<boundary>>

Database
<<entity>>Interface Manager

<<control>>

1 : search()
2 : submitSearch()

3 : executeQuery()

4 : sendStatus
5 : displayStatus()

6 : returnCompileInfo()

7 : compileInformation()



 

94 
 

 
Figure 30 - Temporary Storage Sequence Diagram 

Description: 
The Temporary Storage Sequence Diagram shows the process that the system goes through when the information compiled is stored in a 
temporary folder for the user.  

 : CVM-M User

Patient Search Button
<<boundary>>

Interface Manager
<<control>>

Temporary Storage
<<entity>>

Database
<<entity>>

1 : search()
2 : submitSearch()

3 : executeQuery()

4 : compileInformation()

5 : storeCompileInfo()

6 : storeDisplayInfo()



 

95 
 

 
Figure 31 - Display Compile Information Sequence Diagram 

Description: 
The Display Compile Information Sequence Diagram shows the process that the system goes through when the information compiled is displayed 
for the user in the CVM-M Interface.  
 
 
 
 
 
 
 
 
 

 : CVM-M User

Patient Search Button
<<boundary>>

Interface Manager
<<control>>

Database
<<entity>>

Temporary Storage
<<entity>>

Patient Info Page
<<entity>>

1 : search()
2 : submitSearch()

3 : executeQuery()

4 : sendStatus

5 : returnCompileInfo

6 : compileInformation()

7 : storeCompileInfo()

8 : loadCompileInfo()

9 : SendCompileInfo

10 : DisplayInformation()
11 : StoreDisplayInfo()



 

96 
 

 
 
 
10.5 Appendix E – Design models (static and dynamic) 

 
 
 

 
 
Figure 31: State Machine 

  

CVM Display

Search

ClickSearch [ True ] 

Logout

LogOut [ Click Logout ] / return logOut()

Query

Status

contQuery [ True ] 

Send [ status ] 

Error / DS Exception

Send [ Info ] 

Display Info

Return [ True ] 

Query [ PatientID ] 

NextQuery [ CompileInfo = true ] 



 

97 
 

 
Figure 32: Minimal class diagram 

  

Model

Controller

UI

Login_Page
<<Client Interface>>

CVM-M_User
<<Client Interface>>

Create_Login_Page
<<Client Interface>>

Lost_Password_Page
<<Client Interface>>

Field_Verifier
<<Client Interface>>

CVM-M_Interface
<<Client Interface>>

DS_Settings_Page
<<Client Interface>>

DS_Settings_Info
<<Client Interface>>

User_Account
<<Client Interface>>

Login_Manager
<<Client Interface>>

Interface_Manager
<<Client Interface>>

DS_Connect_Manager
<<Client Interface>>

CCD_DS
<<Client Interface>>

TegesICU_DS
<<Client Interface>>

Mediator
<<Client Interface>>

DS_Mediator
<<Client Interface>>

DS_Objects
<<Client Interface>>

+mediatorSource_Interface
<<Server Interface>>

ClinicalDocument
<<Client Interface>>

Organized_DS
<<Client Interface>>

Graph
<<Client Interface>>

View

Display Browser
<<Client Interface>>



 

98 
 

 
 
 
 
10.6 Appendix F – Documented Class interfaces (code) and constraints. 

 
package cvm.mediator.controller; 
 
import java.io.FileNotFoundException; 
import java.io.FileOutputStream; 
import java.io.IOException; 
import java.sql.SQLException; 
import java.util.ArrayList; 
import java.util.Iterator; 
 
import javax.swing.JComboBox; 
import javax.xml.bind.JAXBException; 
import javax.xml.transform.Transformer; 
import javax.xml.transform.TransformerException; 
import javax.xml.transform.TransformerFactory; 
import javax.xml.transform.stream.StreamResult; 
import javax.xml.transform.stream.StreamSource; 
 
import cvm.mediator.model.Organizer_DS; 
import cvm.mediator.view.HTMLDisplayer; 
 
 
public class InterfaceManager  
{ 
 private CVM_M_user cvmUser; 
 private Organizer_DS organizer; 
 private TegesICU_DS tegesICU_System; 
 private ArrayList<CCD_DS> list_CCD; 
 private ArrayList<CVM_M_patient> patients; 
 private String model; 
  
 public InterfaceManager() throws Exception 
 { 
  this.list_CCD = new ArrayList<CCD_DS>(); 
  this.patients = new ArrayList<CVM_M_patient>(); 
  retrievePatients(); 
   
  this.organizer = new Organizer_DS(); 
 } 
  

Pre-Condition: System has started running and the patients have been taking from the 
administration database. 
Invariants: No patient may have been created at the time of retrieval, probably database 
issues could have occur also that were ignored. 
Post-Conditions: The list is populated on the dropdown list the window that will link the 
data source to the patient. 

 private void retrievePatients() throws Exception 



 

99 
 

 { 
  DS_Connect_CVM_Admin.retrievePatients(this.patients); 
 } 
  
  
 public void setCVMUser(CVM_M_user user) 
 { 
  this.cvmUser = user; 
 } 

 

Pre-Condition: User has logged into the system and patient being used must have being 
link to all data sources; were the information, should be pulled from. 
Invariants: While this function is running the system might be place on hold for a couple 
of seconds, so no process could be executed at this time. 
Post-Conditions: The health information for the patient has been compile and displayed 

  
 public boolean retrieveDS(String patientID, String layout)  
  throws Exception 
 { 
  CVM_M_patient patient; 
   
  patient = this.findPatient(patientID); 
   
  this.model = layout; 
   
  if (patient == null) 
  { 
   return false; 
  } 
   
  MSHealth_DS ccd_DS = new 
   MSHealth_DS(patient.getMSHealthID(),"MSHealth"); 
   
  if (patient.getMSHealthClientID() != null) 
  { 
   if(!MSHealth_DS.setAppID(patient.getMSHealthClientID())) 
   { 
    throw new Exception( 
     "Microsoft HealthVault App Client ID could  
     not be assign."); 
   } 
  } 
  else 
  { 
   throw new Exception( 
    "Patient must be tied to a Microsoft HealthVault  
    App Client ID"); 
  } 
   
  if (patient.getMSHealthID() == null) 
  { 
   throw new Exception( 
    "Patient must be tied to a Microsoft HealthVault  
    Person ID"); 
  }  



 

100 
 

   
  ccd_DS.connect(); 
  ccd_DS.transfer_CCD(); 
  this.list_CCD.add(ccd_DS); 
  this.organizer.addCCD_DS(ccd_DS); 
  System.out.println( 
   this.list_CCD.get(0).CCD_Document.getId().getRoot()); 
   
  this.tegesICU_System = new TegesICU_DS(patient.getTegesID(),  
   "jdbc:sqlserver://", "exserver.cs.fiu.edu", "1433",  
   "TegesICU", "aahmad", "aahmad"); 
  this.tegesICU_System.connect(); 
  this.tegesICU_System.transferData(); 
  this.tegesICU_System.disconnect(); 
  this.organizer.setTegesICU(tegesICU_System); 
   
   
  this.organizer.compileData(patient.getPatientID()); 
   
  //this.organizer.constructTreeTeges(); 
   
  return true; 
 } 
  
  

Pre-Condition: System has started running and the patients have been taking from the 
administration database. 
Invariants: There could be database errors retrieving the items or patients could not 
exist, since they never were added. 
Post-Conditions: System can now use this list of patients to perform any kind of search, 
retrieval or update on information, regarding the patients. 

 public ArrayList<CVM_M_patient> getPatients() 
 { 
  return this.patients; 
 } 
  
  

Pre-Condition: Patients have been retrieved and store in the system. 
Invariants: No patients have been taking into the structure, so nothing can be look for. 
Post-Conditions: A patient has been found and can be either use for processing or be a 
sign to not enter new patients. 

 private CVM_M_patient findPatient(String patientID) 
 { 
  CVM_M_patient tempPatient; 
   
  Iterator it = this.patients.iterator(); 
   
  while(it.hasNext()) 
  { 
   tempPatient = (CVM_M_patient)it.next(); 
   if(tempPatient.getPatientID().compareTo(patientID) == 0) 
   { 
    return tempPatient; 
   } 
  } 



 

101 
 

   
  return null; 
 } 
  

Pre-Condition: Information about a patient has already been compile and been expanded 
into a XML file. 
Invariants: Files IO and search errors can come up as the process is going. 
Post-Conditions: An HTML file is displayed on a reliable HTML browser. 

 public void openGeneratedXML() 
  throws TransformerException, IOException 
 { 
  String filePath_HTML; 
   
  filePath_HTML = convertToHTML(this.organizer.getXMLFile()); 
   
  FileOperations.copy("model/logo.jpg", 
   System.getProperty("java.io.tmpdir") + "logo.jpg"); 
  FileOperations.copy("model/style.css",  
   System.getProperty("java.io.tmpdir") + "style.css"); 
  FileOperations.copy("model/style2.css",  
   System.getProperty("java.io.tmpdir") + "style2.css"); 
   
  HTMLDisplayer.displayURL("file://"+filePath_HTML); 
   
   
 } 
  

Pre-Condition: Information about a patient has already been compile and been exported 
into an XML file. 
Invariants: A file could not be open, or found.  The conversion came up with errors so 
no HTML document could generate it. The HTML was not save properly. 
Post-Conditions: The generated HTML file is saved in a folder. 

 private String convertToHTML(String filePath) 
  throws FileNotFoundException, TransformerException 
 { 
  String gen_HTML = System.getProperty("java.io.tmpdir") +  
   "CVM_M_View.html"; 
  String styleSheet; 
  TransformerFactory tFactory; 
  Transformer transformer; 
          
  if (this.model == null) 
  { 
   styleSheet = "model/Default.xsl"; 
  } 
  else 
  { 
   styleSheet = "model/"+this.model+".xsl"; 
  } 
   
  tFactory = TransformerFactory.newInstance(); 
  transformer = tFactory.newTransformer( 
   new StreamSource(styleSheet)); 
         transformer.transform(new StreamSource(filePath), 
   new StreamResult(new FileOutputStream(gen_HTML))); 



 

102 
 

         System.out.println("** The output is written in "+ 
   gen_HTML+" **"); 
         
         return gen_HTML; 
 } 
  
  

Pre-Condition: The patients have been retrieved from the administrative database and 
populated into a structure in the system, which are showing a dropdown, user has log in 
into the system. 
Invariants: The TegesICU database is down, or there was errors retrieving the necessary 
database on the SQL syntax. 
Post-Conditions: A dropdown list is populated in the window where the TegesICU data 
source is link to the patient. 

 public void retrievePatientList(JComboBox droplist) 
  throws SQLException 
 { 
  this.tegesICU_System = new TegesICU_DS("jdbc:sqlserver://",  
   "exserver.cs.fiu.edu", "1433", "TegesICU", "aahmad",  
   "aahmad"); 
  this.tegesICU_System.connect(); 
  this.tegesICU_System.retrievePatientIDs(droplist); 
  this.tegesICU_System.disconnect(); 
 } 
} 

 
  



 

103 
 

 
10.7 Appendix G - Documented code for test drivers and stubs. 
 
The code below is all the test drivers and stubs created to test the Subsystem. 
 
package TestStubs; 
 
import static org.junit.Assert.*; 
 
import java.io.File; 
import java.lang.reflect.Field; 
 
import javax.xml.bind.JAXBContext; 
import javax.xml.bind.Unmarshaller; 
 
import org.junit.After; 
import org.junit.Before; 
import org.junit.Test; 
 
import cvm.mediator.controller.CCD_DS; 
import cvm.mediator.controller.TegesICU_DS; 
import cvm.mediator.model.Graph; 
import cvm.mediator.model.Organizer_DS; 
 
 
public class OrginizerTest  
{ 
 private String filePath_Gen_XML; 
 Graph theGraph; 
 CCD_DS CCD; 
 JAXBContext jc; 
 Unmarshaller u; 
 Organizer_DS org; 
 Organizer_DS org1; 
 Organizer_DS org2; 
 TegesICU_DS teges; 
 
 @Before 
 public void setUp() throws Exception  
 { 
  this.filePath_Gen_XML = System.getProperty("java.io.tmpdir") 
    + "CCD_File_Created.xml"; 
  jc = JAXBContext.newInstance("org.hl7.v3"); 
  u = jc.createUnmarshaller(); 
  org = new Organizer_DS(); 
  org1 = new Organizer_DS(); 
  org2 = new Organizer_DS(); 
   
  teges = new TegesICU_DS("1932", "jdbc:sqlserver://", 
"exserver.cs.fiu.edu", "1433", "TegesICU", "aahmad", "aahmad"); 
  teges.connect(); 
  teges.transferData(); 
  teges.disconnect(); 
  org1.setTegesICU(teges); 
   
  CCD = new CCD_DS("123", "doctor", 
"C:\\Users\\Owner\\Desktop\\HealthVaultCCD.xml"); 
  CCD.connect(); 



 

104 
 

  CCD.transfer_CCD(); 
  org.addCCD_DS(CCD); 
  org1.addCCD_DS(CCD); 
  File f = new File(filePath_Gen_XML); 
  if(f.exists()) 
   f.delete(); 
 } 
 
 @After 
 public void tearDown() throws Exception  
 { 
  this.filePath_Gen_XML = null; 
  theGraph = null; 
  jc = null; 
  u = null; 
  CCD = null; 
  org = null; 
  org1 = null; 
  org2 = null; 
  teges = null; 
 } 
  
  
 @Test 
 public void CompileDataSD1() throws Exception 
 { 
  org.compileData(); 
  File f = new File(filePath_Gen_XML); 
  theGraph = getGraph(); 
  System.out.println(theGraph.getNumOfVertex()); 
  assertEquals("compiled", true, f.exists()); 
  if(f.exists()) 
  f.delete(); 
 } 
  
 @Test 
 public void compiledataSD2() throws Exception 
 { 
   
  org1.compileData(); 
  File f = new File(filePath_Gen_XML); 
  theGraph = getGraph1(); 
  System.out.println(theGraph.getNumOfVertex()); 
  assertEquals("compiled", true, f.exists()); 
  if(f.exists()) 
   f.delete(); 
 } 
  
 @Test 
 public void compiledataRD1() throws Exception 
 { 
  org2.compileData(); 
  File f = new File(filePath_Gen_XML); 
  theGraph = getGraph2(); 
  System.out.println(theGraph.getNumOfVertex()); 
  boolean check = false; 
  if(theGraph.getNumOfVertex() == 15 && f.exists()) 
   check = true; 
  assertEquals("compiled", true, check); 



 

105 
 

 } 
  
 public Graph getGraph() throws Exception { 
         
  Class c = org.getClass(); 
   
        // get the reflected object  
        Field field = c.getDeclaredField("theGraph"); 
        // set accessible true  
        field.setAccessible(true); 
         
        return (Graph) field.get(org); 
         
    } 
public Graph getGraph1() throws Exception { 
         
  Class c = org1.getClass(); 
   
        // get the reflected object  
        Field field = c.getDeclaredField("theGraph"); 
        // set accessible true  
        field.setAccessible(true); 
         
        return (Graph) field.get(org1); 
         
    } 
public Graph getGraph2() throws Exception { 
     
 Class c = org2.getClass(); 
  
    // get the reflected object  
    Field field = c.getDeclaredField("theGraph"); 
    // set accessible true  
    field.setAccessible(true); 
     
    return (Graph) field.get(org2); 
     
} 
 
} 
 
 
  



 

106 
 

 
10.8 Appendix H – Diary of meeting and tasks for the entire semester. 

PhaseI 
Team 6 Meeting #1 

  

08-28-2010 

3:00PM-4:00PM 

ECS 212 

Meeting called by: All Members Type of meeting: General Meeting 

Facilitator: All Members Note taker: Ivan Olmos 

Timekeeper: Jandry Guerra     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra 

  

Please read: Luis Bautista could not meet because he was out of the country. 

Please bring:  N/A 

  

  

Agenda item: Project introduction Presenter: Peter Clarke 

Discussion:   

Professor Clarke introduced us to the project and described some aspects of the project. We saw videos 

describing the functionalities and a prototype of the software. We then discussed some of the project 

requirements such as: 

 Be able to handle multiple data sources 

 Be able to formulate XML base on Data sources 

 Display XML for multiple users 

 Base XML Display on predefined user’s layouts.  

Conclusions: 
  

  

Jandry Guerra was decided to be the team leader for phase I. Group decided to have a meeting in order to 

plan and understand the project. General meetings will be every Thursday at 3:25pm on ECS 145/ECS 

212. 

      

Agenda item: Project planning and understanding Presenter: All Members 

Tasks:    



 

107 
 

 Read documentation found in cis.fiu.edu/cml.  

 Formulate a problem statement 

 
Team 6 Meeting #2 
  

08-28-2010 

4:00PM-5:30PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of meeting: Team Meeting 

Facilitator: All Members Note taker: Ivan Olmos 

Timekeeper: Jandry Guerra     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra 

  

Please read: Luis Bautista could not meet because he was out of the country. 

Please bring:  N/A 
  
  

Agenda item: Project planning and 
understanding Presenter: Ivan Olmos 

Discussion:   
 We mainly discussed details of the project in order to understand it more in depth. Ivan explained the 

Architecture for on-demand sharing of EMRs Figure found in the cis.fiu.edu/cml website. We then plan 

our meeting schedules. 

 
 

Conclusions: 
  
  

We concluded that meetings will usually be on Saturdays at 3:00pm or Fridays at 4:00pm. 
Note: subject to change 

      

Agenda item: Database details Presenter: All Members 

Tasks:    

Read about HL7 and DICOM, to get familiarize with what we are going to be working with. 
 
 
 
 



 

108 
 

 
Team 6 Meeting #3 

  

09-02-2010 

3:00PM-4:00PM 

ECS 212 

Meeting called by: All Members Type of meeting: General Meeting 

Facilitator: All Members Note taker: Jandry Guerra 

Timekeeper: Luis Batista     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Batista 

  

Please read:  N/A 

Please bring:  N/A 

  

  

Agenda item: Database details Presenter: All Members 

Discussion:   

 Discussion was mainly about the Tegus database. Yali clarified some details about the databases and the 

mediator. The group then discussed about the documentation to be done, and each member was assigned 

some task. 

Conclusions: 
  

  

Professor Clark requested the group to present the documentation of what we had done so far on 

09/09/2010. Each member was assigned a task (draft by 09/02/2010). 

      

Agenda item: Documentation and Problem definition Presenter: All Members 

Tasks:    

 Eduardo Flores: Alternative Solutions 

 Ivan Flores: Constrains and Limitations 

 Jandry Guerra: Alternative Solutions 

 Luis Batista: Feasibility matrix 

 
 
 
 



 

109 
 

 
Team 6 Meeting #4 

  

09-06-2010 

2:30PM-6:00PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of meeting: Team Meeting 

Facilitator: All Members Note taker: Jandry Guerra 

Timekeeper: Luis Batista     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Batista 

  

Please read:  N/A 

Please bring:  A draft of the documentation that was assigned on previews meeting. 

  

  

Agenda item: Documentation and Problem definition Presenter: All Members 

Discussion:   

 Each member presented the documentation they had done up-to-date. The group reviews the 

documentation and fixed any mistakes or added new information.  

Conclusions: 
  

  

The group decided to show documentation to Professor Clarke on 09/07/2010.  

      

Agenda item: Meeting with Tom Gomez, Director of 

Program Management 

Presenter: All Members 

Tasks:    

 Luis Batista: High Level Requirements 

 Jandry Guerra: Project Plan 

 
 
  



 

110 
 

 
 

Team 6 Meeting #5 

  

09-06-2010 

6:00PM-7:30PM 

ECS 212 

Meeting called by: All Members Type of meeting: Presentation 

Facilitator: All Members Note taker: Ivan Olmos 

Timekeeper: Luis Batista     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Batista 

  

Please read:  N/A 

Please bring:  N/A 

  

  

Agenda item: 
Meeting with Tom Gomez, Director of 

Program Management 
Presenter: Tom Gomez 

Discussion:   

The functionality of the CONNECT database was described and how it works behind the scenes. The 

communication standards that would be use for the CONNECT database were described as HL7 XML, 

which is CCD. 

Conclusions: 
  

  

The group learned about CONNECT, how it works and its functionalities.  

      

Agenda item: Review documentation with Professor 

Clarke 

Presenter: All Members 

Tasks:    

 Submit all documentation to be reviewed on 09/07/2010 once is done. 

 
 
  



 

111 
 

 
 

Team 6 Meeting #6 

  

09-07-2010 

3:30PM-4:40PM 

ECS 145 

Meeting called by: All Members Type of meeting: Class Meeting 

Facilitator: All Members Note taker: All Members 

Timekeeper: Luis Batista     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Batista 

  

Please read:  N/A 

Please bring:  Jandry Guerra: Documentation draft 

  

  

Agenda item: 
Review documentation with Professor 

Clarke 
Presenter: All Members 

Discussion:    

 The group showed the documentation to Professor Clarke. We discussed and clarify some of the 

mistakes in the document, and added new information. 

Conclusions: 
  

  

Group received feedback from Professor Clarke. 

      

Agenda item: Review documentation with Professor 

Clarke 

Presenter: All Members 

Tasks:    

 Each Member had to fix the document(due 09/09/2010) 

 
 
 
 
 



 

112 
 

Team 6 Meeting #7 

  

09-09-2010 

3:30PM-4:40PM 

ECS 145 

Meeting called by: All Members Type of meeting: Class Meeting 

Facilitator: All Members Note taker: All Members 

Timekeeper: Luis Batista     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Batista 

  

Please read:  N/A 

Please bring:  Jandry Guerra: Documentation 

  

  

Agenda item: 
Review documentation with Professor 

Clarke 
Presenter: All Members 

Discussion:    

 The group showed the documentation to Professor Clarke. We discussed and clarify some of the 

mistakes in the document, and added new information. 

Conclusions: 
  

  

Group received feedback from Professor Clarke. 

      

Agenda item: Document Assembly Presenter: All Members 

Tasks:    

 Submit all documentation to Google group. 

 
 
 
  



 

113 
 

 
 

Team 6 Meeting #8 

  

09-10-2010 

3:40PM-8:00PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of meeting: Team Meeting 

Facilitator: All Members Note taker: All Members 

Timekeeper: Luis Batista     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Batista 

  

Please read:  N/A 

Please bring:  N/A 

  

  

Agenda item: Document Assembly Presenter: All Members 

Discussion:   

There was not much discussion during this meeting, it was mainly working together and getting the 

document together. We did some minor discussion but mainly about the documents syntax.  

Conclusions: 
  

  

The group completed the document for the first deliverable as well as the presentation. 

      

Agenda item: Presentation Presenter: All Members 

Tasks:    

 Prepare for the Presentation 

 
  



 

114 
 

 
Phase II 
 

  

Team 6 Meeting # 1 
  

9-21-2010 

7:00PM-9:00PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Ivan Olmos 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Luis Bautista 

  

Please read: 
 

Please bring:  N/A 
  
  

Agenda item: Review Software Specification Presenter: All Members 

Discussion:   
The group discussed the software specification and brainstorm on a more detail system requirements. 
There was also a minimal discussion on some ideas for security use cases.   

Conclusions: 
  
  

The group wrote 25 system requirements for the CVM-M system. 

      

Next Agenda item: Identify Use Cases Presenter: All Members 

Tasks:    

 Each team member had to think of 5 use cases including a security one for next meeting.  



 

115 
 

Team 6 Meeting # 2 
  

9-23-2010 

4:30PM-5:30PM 

ECS 145/ JCCL 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note 
taker: Ivan Olmos 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: 
 

  
  

Agenda item: Identify Use Cases Presenter: 
 

Discussion:   
The group identifies 20 use cases base on the system specification and selected 10 of those to be 
implemented. Each member selected which use cases they wanted to write.  

Conclusions: 
  
  

Use cases were assigned to all members of the team.  

      

Next Agenda item: Review Use Cases Presenter: All Members 

Tasks:   

Each member had to write 5 uses cases to be done by next meeting, were they are going to be review.  
Eduardo: Write scenarios 
  



 

116 
 

Team 6 Meeting # 3 
  

9-28-2010 

4:30PM-5:30PM 

ECS 145/ JCCL 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note 
taker: Ivan Olmos 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: 5 use cases including a security use case 
  
  

Agenda item: Review Use Cases Presenter: 
 

Discussion:   
The group reviewed all the use cases. We discussed about some ambiguity and corrected them. Corrected 
some of the none-functional requirements to make them consistent. We also discussed about StarUML 
and assigned some task to each member.    

Conclusions: 
  
  

Use cases were fixed, and we went over StarUML 

      

Next Agenda item: Dynamic and Static Models Presenter: All Members 

Tasks:   
Ivan: Static Models- Object diagrams 
Jandry: Use case model/ Static Models 
Luis: Dynamic models 

  



 

117 
 

Team 6 Meeting # 4 
  

9-29-2010 

7:30PM-9:40PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Ivan Olmos 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: Draft of the dynamic and Static Models 
  
  

Agenda item: Dynamic and Static Models Presenter: 
 

Discussion:   
The discussion was mainly about the relationships between the use cases, and working on the sequence 
diagrams and object diagram. We helped and revised each others to complete these diagrams. Group was 
unable to finish all the diagrams; therefore another meeting was requested. 

Conclusions: 
  
  

Grouped finished some of the diagrams and in the next meeting group will work on the remaining ones.  

      

Next Agenda item: Dynamic and Static Models 
Continuation 

Presenter: All Members 

Tasks:   
Eduardo: Sequence diagrams 
Ivan: Object diagram 
Jandry: Object diagram 
Luis: Sequence diagrams 

  



 

118 
 

Team 6 Meeting # 5 
  

10-02-2010 

7:30PM-8:30PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Ivan Olmos 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: N/A 
  
  

Agenda item: Dynamic and Static Models 
Continuation Presenter: 

 
Discussion:   
Group worked on the remaining diagrams to be done. We then revised all of the diagrams to make sure 
they were consistent and there were no mistakes. We then talked about the prototype of the system, and 
scheduled a meeting in order to implement it.  

Conclusions: 
  
  

A prototype will be implemented on the next meeting.  

      

Next Agenda item: Prototype implementation Presenter: All Members 

Tasks:   

Each member had to go over the use cases and specification to make sure we had a clear understanding of 
the system, in order to create the prototype.  
  



 

119 
 

Team 6 Meeting # 6 
  

10-04-2010 

7:30PM-11:00PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Ivan Olmos 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: N/A 
  
  

Agenda item: Prototype implementation Presenter: 
 

Discussion:   
We started working on the prototype and made sure it followed the specifications.  Changes were made to 
the use cases because there were some mistakes and ambiguity.  

Conclusions: 
  
  

A prototype was implemented, and each member was assigned some part of the document. 

      

Next Agenda item: Document Assembly Presenter: All Members 

Tasks:   
Eduardo: Proposed System Requirements 
Ivan: Review Chapters 1 and 2. 
Jandry: Project Plan/ Section 4.1 
Luis: Cost Estimate 

  



 

120 
 

Team 6 Meeting # 7 
  

10-08-2010 

7:00PM-12:30PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Ivan Olmos 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: Assigned Documentation  
  
  

Agenda item: Document Assembly Presenter: 
 

Discussion:   
The group put together the document and reviewed each chapter to loop for mistakes. We also corrected 
some of the mistakes from the previous deliverable. We then created the presentation to be presented on 
October 12.  

Conclusions: 
  
  

Document and the presentation were completed  

      

Next Agenda item: Presentation Presenter: All Members 

Tasks:   

Prepare for the presentation. 
 
 

 

 

 

 



 

121 
 

Phase III 

 

 

 

 

 

 

Team 6 Meeting # 1 
  

10-21-2010 

3:00PM-4:00PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note 
taker: Luis Bautista 

Timekeeper: Ivan Olmos     

Attendees: Eduardo Flores, Ivan Olmos, Luis Bautista, Jandry Guerra 

Please read:  
Please bring:  N/A 
  
Agenda item: Review Design Document Presenter: All Members 

Discussion:   
We discuss the different thing we are doing in the document which are going to be different then the last 
one. 

Conclusions:   
  

We assessed the amount of worked we need it to do. 

      
Next Agenda item: Brainstorm on the current document Presenter: All Members 

Tasks:    

 Come up with ideas on how to approach it. 



 

122 
 

 

 

 

 

 

Team 6 Meeting # 2 
  

10-22-2010 

7:00PM-10:00PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Luis Bautista 

Timekeeper: Ivan Olmos     

Attendees: Eduardo Flores, Ivan Olmos, Luis Bautista, Jandry Guerra 

  

Please read: 
 

Please bring:  N/A 
  
  

Agenda item: Review Design Document Presenter: All Members 

Discussion:   
The group discussed the Design Document and brainstorm on how to approach this document.   We also 
broke down the work each of us was going to be in charge of.  

Conclusions: 
  
  

We all add specific things to do in this document before next meeting. 

      

Next Agenda item: Status of where we are Presenter: All Members 

Tasks:    

 Each member will tell the status of their work. 



 

123 
 

 

 

 

 

 

Team 6 Meeting # 3 
  

10-28-2010 

3:00PM-4:00PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Luis Bautista 

Timekeeper: Ivan Olmos     

Attendees: Eduardo Flores, Ivan Olmos, Luis Bautista, Jandry Guerra 

  

Please read: 
 

Please bring:  N/A 
  
  

Agenda item: Design Patterns Presenter: All Members 

Discussion:   
Discussion on current design pattern being use and if we can implemented. 

Conclusions: 
  
  

We decided that a new pattern is need it. 

      

Next Agenda item: Pick a new pattern Presenter: All Members 

Tasks:    

 Talk to Prof. Clark about it. 



 

124 
 

 

 

 

 

 

Team 6 Meeting # 4 
  

10-28-2010 

7:00PM-10:00PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Luis Bautista 

Timekeeper: Ivan Olmos     

Attendees: Eduardo Flores, Ivan Olmos, Luis Bautista, Jandry Guerra 

  

Please read: 
 

Please bring:  N/A 
  
  

Agenda item: Design Patterns Presenter: All Members 

Discussion:   
A new design pattern was selected and started to implement it. 

Conclusions: 
  
  

We decided to use Proxy design pattern and Mediator design patter 

      

Next Agenda item: Continue to talk about progress Presenter: All Members 

Tasks:    

 Finish current individual assigned worked. 



 

125 
 

 

 

 

 

 

Team 6 Meeting # 5 
  

10-29-2010 

7:00PM-11:00PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Luis Bautista 

Timekeeper: Ivan Olmos     

Attendees: Eduardo Flores, Ivan Olmos, Luis Bautista, Jandry Guerra 

  

Please read: 
 

Please bring:  N/A 
  
  

Agenda item: Design Document current status Presenter: All Members 

Discussion:   
We talked about the progress on the document and how we could go about doing some of the other work 
on the document. 

Conclusions: 
  
  

We manage to finish some of the chapters and only need to polish them. 

      

Next Agenda item: Continue to get statues on current 
work. 

Presenter: All Members 

Tasks:    

 Finish current individual assigned worked. 



 

126 
 

 

 

 

 

 

Team 6 Meeting # 6 
  

10-30-2010 

6:00PM-10:00PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Luis Bautista 

Timekeeper: Ivan Olmos     

Attendees: Eduardo Flores, Ivan Olmos, Luis Bautista, Jandry Guerra 

  

Please read: 
 

Please bring:  N/A 
  
  

Agenda item: Design Document current status Presenter: All Members 

Discussion:   
The finishing of the document 

Conclusions: 
  
  

Finish the major parts of it. Including chapter 2 and chapter 3. 

      

Next Agenda item: Put the document together Presenter: All Members 

Tasks:    

 Go over finish document 



 

127 
 

Phase IV 

Team 6 Meeting # 1 
  

11-05-2010 

7:00PM-9:00PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Jandry Guerra 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: Assigned Documentation  
  
  

Agenda item: Document Assembly Presenter: 
 

Discussion:   
We discuss what was need it in order to accomplish this phase and how we can do it. 

Conclusions: 
  
  

Each team member was assigned an specific task to complete before the next meeting. 

      

Next Agenda item: Progress Presenter: All Members 

Tasks:   

We need to find where everyone stand on the moment with their current work. 
 

 

 

 

 



 

128 
 

Team 6 Meeting # 2 
  

11-09-2010 

7:00PM-11:00PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Jandry Guerra 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: Lap Tops 
  
  

Agenda item: Progress on current assigned tasks Presenter: 
 

Discussion:   
We discuss how the programming part of each task was going. 

Conclusions: 
  
  

We concluded that each one of us was making progress. 

      

Next Agenda item: Progress on the programming part. Presenter: All Members 

Tasks:   

We need to find out the progress on the current task of programming. 
 

 

 

 

 

 



 

129 
 

Team 6 Meeting # 3 
  

11-13-2010 

5:00PM-9:00PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Jandry Guerra 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: Lap Tops 
  
  

Agenda item: Programming progress Presenter: 
 

Discussion:   
We went over everyone current assigned task and found out some of us where falling a bit behind and 
need it to step it up. 

Conclusions: 
  
  

We help each other find a solution for things that were slowing us down and impeding our progress. 

      

Next Agenda item: Progress Presenter: All Members 

Tasks:   

We need to have the major part of our programming project done. 
 

 

 

 

 

 



 

130 
 

Team 6 Meeting # 4 
  

11-19-2010 

7:00PM-11:30PM 

JCCL (LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Jandry Guerra 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: Lap Top 
  
  

Agenda item: Be done with major programming parts Presenter: 
 

Discussion:   
We found out that most of us had finished the major programming parts but there still a lot of work to be 
done. 

Conclusions: 
  
  

We assigned more work for those whom had finished their parts 

      

Next Agenda item: Progress on current tasks Presenter: All Members 

Tasks:   

Finish the programming portion and start testing our project. 
 

 

 

 

 

 



 

131 
 

 

Team 6 Meeting # 5 
  

11-26-2010 

7:00PM-12:00AM 
JCCL 

(LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Jandry Guerra 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: Lap Tops  
  
  

Agenda item: Progress on finishing Programming portion. Presenter: 
 

Discussion:   
We came to a conclusion that we can start testing the part of the project that was finished. 

Conclusions: 
  
  

Part of the project that was finished was tested and passed. 

      

Next Agenda item: Finish programming part completely and start 
fixing bugs, and complete testing. 

Presenter: All Members 

Tasks:   

We need to finish the programming portion once and for all and fix the little and complete testing. 
 

 

 

 



 

132 
 

Team 6 Meeting # 6 
  

11-30-2010 

7:00PM-11:00PM 
JCCL 

(LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Jandry Guerra 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: Lap Tops  
  
  

Agenda item: Finish programming part completely and start 
fixing bugs, and complete testing. Presenter: 

 
Discussion:   
We found out that we going to need a few more days to completely finish the programming portion. 

Conclusions: 
  
  

We decided that we should be done by next meeting with the programming portion. 

      

Next Agenda item: Finish testing and start to pull together the 
documentation. 

Presenter: All Members 

Tasks:   

We need to finish the testing and start on the documentation. 
 

 

 

 



 

133 
 

 

Team 6 Meeting # 7 
  

12-02-2010 

6:00PM-9:00PM 
JCCL 

(LABORATORY) 

Meeting called by: All Members Type of 
meeting: Team Meeting 

Facilitator: All Members Note taker: Jandry Guerra 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: Lap Tops  
  
  

Agenda item: Finish testing and start to pull together the 
documentation. Presenter: 

 
Discussion:   
We are finally done with the programming portion.  We talked about the finishing of the testing and how 
to complete the documentation. 

Conclusions: 
  
  

We started to finish the testing part and assigned some team member part of the documentation while 
others test the software. 

      

Next Agenda item: Have the testing completed and also look into 
finishing the documentation. 

Presenter: All Members 

Tasks:   

We need to be done with testing and have the documentation almost finish. 
 

 

 



 

134 
 

 

 

 

Team 6 Meeting # 8 
  

12-03-2010 

7:00PM-11:00PM 
JCCL 

(LABORATORY) 
Meeting called 
by: All Members Type of 

meeting: Team Meeting 

Facilitator: All Members Note taker: Jandry Guerra 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: Lap Tops  
  
  

Agenda item: Have the testing completed and also look into 
finishing the documentation. Presenter: 

 
Discussion:   
We talk about finishing the testing and also about the documentation progress. 

Conclusions: 
  
  

We are almost done with testing and we gave it an extra day to finish.  The documentation is almost done. 

      

Next Agenda 
item: 

Finish documentation and get ready to record our 
presentation in case of malfunction during 
presentation. 

Presenter: All Members 

Tasks:   

We need to finish documentation and record the programming working under different scenarios. 
 



 

135 
 

 

 

Team 6 Meeting # 9 
  

12-05-2010 

6:00PM-11:00PM 
JCCL 

(LABORATORY) 
Meeting called 
by: All Members Type of 

meeting: Team Meeting 

Facilitator: All Members Note taker: Jandry Guerra 

Timekeeper: Eduardo Flores     

Attendees: Eduardo Flores, Ivan Olmos, Jandry Guerra, Luis Bautista 

  

Please read: 
 

Please bring: Lap Tops  
  
  

Agenda item: 
Finish documentation and get ready to record our 
presentation in case of malfunction during 
presentation. 

Presenter: 
 

Discussion:   
We talk about the finishing of documentation and we started to record our presentation. 

Conclusions: 
  
  

We finished documentation and started recording or presentation in case of malfunction on Tuesday. 

      

Next Agenda 
item: 

Start to practice presentation.  Get ready for final 
presentation. 

Presenter: All Members 

Tasks:   

We need to practice our presentation. 
 

 
 


	GNU LESSER GENERAL PUBLIC LICENSE  Version 3, 29 June 2007
	1. Introduction
	1.1. Problem definition
	1.2. Scope of the System
	1.3 Over all development methodology.
	1.4. Definitions, Acronyms and Abbreviations
	1.5. Overview of the document

	2. Feasibility Study
	2.1 Description of current system.  Identify limitations and constraints
	2.2 Description of alternative solutions considered.
	2.3 Recommendation with explanation of why the solution was selected.

	3. Project Plan
	3.1. Project Organization
	3.1.1. Project Personnel Organization
	3.1.2. Hardware and Software Resources
	3.2. Identification of Tasks, Milestones and Deliverable (work breakdown with cost estimate for milestones)
	3.3. Cost of the project

	4. System Requirements
	4.1. Functional and Nonfunctional Requirements
	Nonfunctional Requirements
	4.2 Analysis of Requirements
	4.2.1 Use Case Model
	4.2.2. Static Models
	4.2.3. Dynamic Models

	5. System Design (i.e., overall system design)
	5.1. Overview
	5.2. Subsystem Decomposition
	5.3. Hardware and Software Mapping
	5.4. Persistent Data Management

	6. Detailed Design
	6.1. Overview
	6.2. Static Model
	6.3. Dynamic Model
	6.4 Code Specification

	7. System Validation
	7.1 Subsystem Test
	7.2 System Tests

	8. Glossary
	9. References
	10. Appendix
	10.1 Appendix A - Project schedule (Gantt chart or PERT chart).
	10.2 Appendix B – All use cases with nonfunctional requirements.
	10.3 Appendix C – User Interface designs
	10.4 Appendix D – Analysis models (static and dynamic)
	10.5 Appendix E – Design models (static and dynamic)
	10.6 Appendix F – Documented Class interfaces (code) and constraints.
	10.7 Appendix G - Documented code for test drivers and stubs.
	10.8 Appendix H – Diary of meeting and tasks for the entire semester.


