
 1

April 16, 2007
CEN 4021 - Software Engineering II/CEN 5064 -
Software Design
Professor: Peter Clarke

Team #1
Integrants:

1. Alejandro Ortiz
2. Ariel Cary
3. Frank Hernandez

 2

Abstract

Today we encounter several types of communication applications and technologies: chat

messaging, voice over IP, cellular telephony, etc. Typically, the development of a communication

application that integrates these diverse technologies is a complex and costly process; especially a

model that abstracts out the specific implementation platforms. This is despite of the fact that

there currently exist visual environments and high-level programming languages. Recently, there

has been some work done in this direction. In particular, [1] proposes a declarative language for

specifying user-centric communication schemas that are network and device independent.

This document contains the requirements, project plan and system model documentations for

a system based in [1], which we call “Rapid Realization of Communication Services System”.

This system will practically allow a user to create a communication model using an easy to use

graphical infrastructure, which allows the user to export and transform this model in order to

make phone calls and send chat messages. This system will also allow developers to implement

any variety of communication models that they wish, simply by dragging shapes and connections

into the modeling environment. In a matter of minutes he will have implemented a working

model to establish any kind of communication between any kind and number of end users.

 3

Table of Contents

Abstract .. 2
1. Introduction... 5

1.1 Purpose of System.. 5
1.2 Scope of System... 5
1.3 Limitations of Current Systems ... 5
1.4 Analysis and Design Methodology.. 6
1.5 Definitions, Acronyms, and Abbreviations .. 8
1.6 Overview of Document ... 8

2. Project Plan.. 9
2.1 Project Organization .. 10
2.2 Hardware/Software Requirements... 12
2.3 Work Breakdown ... 12

3. Requirement Elicitation and Analysis ... 13
3.1 Overview... 13
3.2 Functional Requirements .. 13
3.3 Non functional requirements .. 15
3.4 System Models ... 16

3.4.1 Use Case Model .. 16
3.4.2 Object Model... 16
3.4.3 Dynamic Model .. 17
3.4.4 User Interfaces .. 18

3.5 Validation of the Analysis Model .. 19
3.5.1 Test Cases .. 19
3.5.2 Analysis Model ... 27
3.5.3 Structure Walkthrough... 29

4. Proposed Software Architecture... 31
4.1 Overview – Package Diagram .. 31
4.2 Metamodel for the DSL .. 34
4.3 UML profiles .. 36
4.4 Generative architecture ... 39
4.5 Subsystem Decomposition.. 40
4.6 Validation of the System Model .. 41

4.6.1 Check List.. 41
4.6.2 Structure Walkthrough... 42

5. Object Design... 43
5.1 Overview... 43

5.1.1 Brief Class Description .. 43
5.1.2 Design Patterns ... 46

5.2 Object Interaction... 47

 4

5.2.1 Statechart For StreamHandler (Pipe) ... 47
5.3 Detailed Class Design ... 47
5.4 Validation of the Detailed Design Model ... 52

5.4.1 Check List.. 52
5.4.2 Structure Walkthrough... 53

6. Implementation ... 55
6.1 Description of the platform specific model used. .. 55
6.2 Validation of System ... 56

6.2.1 Check List.. 56
6.2.2 Implementation Test... 57

7. Glossary .. 60
8. Appendix .. 61

8.1 Appendix A – Use Case Diagrams .. 61
8.2 Appendix B – Use Cases... 62
8.3 Appendix C – Class Diagram For Analysis Model ... 86
8.4 Appendix D – Sequence Diagrams.. 90
8.5 Appendix E – User Interfaces... 97
8.6 Appendix F – Detailed Class Diagram.. 100
8.7 Appendix G – Class Interfaces ... 106
8.8 Appendix H – Project Schedule ... 116
8.9 Appendix I – Diary of Meetings .. 117

References... 117

 5

1. Introduction

The following is an introduction to Rapid Realization of Communication Services System. In

this chapter, the purpose and scope of the system, as well as any necessary term definitions,

acronyms, and abbreviations shall be defined. Finally, an overview of this document will be

outlined.

1.1 Purpose of System

In recent years, communications have been shifting dramatically from the phone lines

towards the digital form. Chat messaging, video conferencing, voice over IP, and countless

other forms of digital communication are taking over. It is cheaper, faster, and increasingly

more reliable as technology improves. Thus, many communication services are emerging to

supply this rapid increase of demand. Many of the services that are provided are very similar

in nature. That is where the Rapid Realization of Communication Services System comes into

play. First of all, it will use a model-driven approach to software development, allowing

engineers to implement a series of models in a matter of minutes, worrying about coding at a

minimum. It will provide an easy to use graphical interface to create these models and all the

relationships among them. Finally, they can be then translated and executed, allowing great

flexibility and functionality to the developer.

1.2 Scope of System

The system will target developers of communication models, as well as end users executing

the models and the end users interacting with the series of calls made by the first user. The

system requires the existence of a Communications Virtual Machine. The program then sits

over this machine and performs communication related calls to be executed by it. For the

sake of this project Skype will be used as a replacement for the CVM.

1.3 Limitations of Current Systems

Currently there are many services that provide communication capabilities to users. However,

many of them do not offer automated sequence of services. If a user needs to send a chat

message to a couple of people, to remind them a meeting is going to take place, send them a

file containing the meeting material, and invite them to the video conference, he has to do a

 6

lot of work. If a developer attends to his needs, he can implement this functionality. However,

if this user now needs something else, it becomes very inefficient to constantly change his

needs. RRCommSSys provides a graphical modeling environment where the developer can

implement any kind of communication schema. The system will, in this way decrease

development speed, with the ability to save and load previously stored models, increase

consistency within models, and are exported in a very portable format. It is a very elegant

solution for flexible communication needs.

1.4 Analysis and Design Methodology

The Unified Software Development Process (USDP) was used in the development of this

project. The main reason is because it provides traceability features, which is important as it

provides means for mapping model artifacts among several stages of the project, and it is use

case driven.

The iterative and incremental features helped refine the final product as we got to know much

better the specific implementation platforms, namely Eclipe GMF and Skype library. The use

case approach for gathering the systems requirements was also suitable to collect the

functional requirements in this project.

In addition, we eased the design of the system by using architectural and design patterns. The

architectural patterns used are: MVC and Pipe and Filter, whereas the design patterns:

Abstract Factory, command, Façade.

We used the UML 2 notation for specifying the different artifacts of the system. The UML

models used in the project are: uses case diagrams, class diagrams, sequence diagrams, UML

profiles.

The following figure shows how the different phases of the USDP process are related.

 7

Fig 1.1 Unified Software Development Process [2]

The USDP approach was complemented with the use of the DMSD approach. The main

reason for using the Model Driven Software Development (MDSD) was to increase the

development speed. Through automation we are able to generate large amount of run-able

code from formal models. This approach also allows for a higher quality of code, as some of

the code generation is automated it the human error factor I removed from the equation and

errors are less likely to appear later on in the future. The MDSD approach also aids in the

management of complexity, it allows for ‘programming’ r configuration on a more abstract

level. Reusability was another big reason was choosing this approach, once all our

architectures, transformations, and modeling languages have been defined the can be later

used in a software product line for manufacturing diverse software systems.

Analysis model

Use case
model

Design model

Deployment model

Implementation
model

Test model

specified by

realized by

distributed by

verified by

implemented by

System
Development

 8

The following figure shows how the different phases of the MDSD process are related.

Fig. 1.2 Model Driven Software Development

The process is combination of (2) : (1) development processes basically use case driven as

each model defines a certain aspect of the use cases as the development process goes on. (2)

it uses MDSD to guarantee an increased development speed, better software quality, and

reusability.

1.5 Definitions, Acronyms, and Abbreviations

RRCommSSys – Name of this project – Rapid Realization of communication Services

System.

VE - Visual Environment.

GEF - Graphical Editing Framework

GMF - Graphical Modeling Framework

CVM - Communication Virtual Machine.

CML - Communication Modeling Language.

1.6 Overview of Document

 9

The rest of this document consists of more detailed information about the development

process of RRCommSSys. This is broken down into seven more chapters:

• Chapter 2 describes the project plan for the development of RRCommSSys. The

team roles, hardware/software requirements, and the work break-down are all

described.

• Chapter 3 has the functional and non-functional requirements of the system, and the

system models. The latter include Scenarios and use cases, Object and Dynamic

models, and the user interface.

• Chapter 4 discusses the proposed system architecture in terms of models and

metamodels. This chapter also covers the subsystem decomposition of

RRCommSSys application.

• Chapter 5 presents the object design in terms of static and dynamic models. It

overviews the objects interactions as well as detailed class diagrams.

• Chapter 6 discusses the implementation and describes the platform specific models

used to run the application.

• Chapter 7 includes a glossary of terms used in this document for the general reader.

• Chapter 8 contains the appendixes consisting of supporting documentation and

visual aids for the previous chapters.

• Appendix A – contains the use cases diagrams of the project.

• Appendix B – Use Cases with Nonfunctional Requirements

• Appendix C – Class diagrams for the analysis model.

• Appendix E – Detailed class diagrams showing attributes and methods for

each class.

• Appendix F – Class interfaces, attributes and methods of the classes implemented in

this project.

• Appendix G - Diary of Meetings and Tasks.

2. Project Plan

 10

This section discusses the fundamental structure of the Rapid Realization of Communication

Services System (RRComSSys for short) development plan. This includes the different roles

involved in creating this project, the hardware and software requirements important to its

functionality and maintenance, and the milestones and deliverables produced during each one

of the phases of the project.

2.1 Project Organization

The following figure displays the hierarchy of the roles involved in the RRComSSys project

throughout the first phase of development:

 Phase I:

 Phase II

 Phase III

Leader
Alejandro Ortiz

GMF
Consultant

Frank
Hernandez

GMF Developer
Frank

Hernandez

Parser
Designer/Progr

ammer
Alejandro Ortiz

Minute Taker
Ariel Cary

Leader
Ariel Carry

GMF
Consultant

Frank
Hernandez

GMF Developer
Frank

Hernandez

Parser

Designer/Progr
ammer

Alejandro Ortiz

Minute Taker
Ariel Cary

 11

Leader – Oversees all project tasks and ensures all milestones are reached. He/she

manages group meetings, answers questions regarding the project, and assigns work to

each member of the group.

GMF Developer – Works developing a product that is dependable, usable, maintainable,

and efficient. His tasks are based on the designing of the Visual Environment (VE) class

structure. The GMF developer will design the structure to be use by the Eclipse modeling

environment that generates the VE.

GMF Consultant – Handles any question specific to the Eclipse GMF. Go-to guy when

a problem arises that one of the developers can’t easily solve.

Parse Designer/Programmer – Handles the design of the structure of the X-CML

parser. Will also handle the main concerns with the implementation of the parser.

Minute Taker – Keeps a documented journal of all meetings. These journals include

time and date, attendance, and the topics discussed during each meeting. He distributes

this information to the rest of the group by the end of the week.

Leader
Frank

Hernandez

GMF
Consultant

Frank
Hernandez

GMF Developer
Frank

Hernandez

Parser

Designer/Progr
ammer

Alejandro Ortiz

Minute Taker
Ariel Cary

 12

2.2 Hardware/Software Requirements

Hardware needed

1. Processor: 1Ghz or faster

2. Memory: 512 MB of RAM

3. Hard Drive: 40 GB

Software needed

1. Windows XP Professional

2. Microsoft Word

3. Rational Rose

4. Microsoft Project

5. Microsoft PowerPoint

6. Eclipse 3.2

7. Graphical Editing Framework (GEF)

8. Graphical Modeling Framework (GMF)

9. Eclipse Modeling Framework (EMF)

10. Skype

11. Xerces-J-bin.1.4.4

12. Xerces-J-bin.2.9.0

2.3 Work Breakdown

Tasks and Milestones

The tasks in the development of RRCommSSys were divided into three milestones:

Milestone 1 consisted of the completion of the Use Case Phase and the Analysis Phase. This

resulted in a software requirements document handed in to the client. It also covered Object

and Dynamic models. Milestone 2 consisted of the completed of Design Phase and started on

the model driven software development approach. After generating models and code, the

necessary transformations will be made. This resulted in a design document handed in to the

client. Finally, Milestone 3 consisted of the completion of the Testing Phase as well as the

completion of the entire project. Below are the list of tasks, please refer to Appendix A for a

more graphical representation. Refer to Appendix H for project schedule and Appendix I for

diary.

 13

3. Requirement Elicitation and Analysis

3.1 Overview

The system essentially allows the development of communication schemas using a

declarative Communication Modeling Language (CML) as proposed in [1], in a user-friendly

environment, aiming at rapid development and deployment. The CML language is defined by

a grammar that describes the allowed configurations of the communication schemas. A

communication scenario, that is a concrete instance of a communication schema, is executed

by a Communication Virtual Machine (CVM). The communication schemas are developed

by one type of user, which we call CVM developer.

Later, a CVM end-user runs the communication schema for which the system creates an

instance with the information provided in the abstract model. For this purpose, the system

firsts validates the model to check that it complies with the CML grammar. Second, if some

information is missing for the instantiation, such as the participants, the capabilities of the

communication device each person is attached to, the type of data to be transferred, etc., the

system requests the CVM end-user to provide such information to execute the model.

Once the communication schema is validated and instantiated, the system executed the

appropriate calls to realize the communication over a target communication platform.

3.2 Functional Requirements

The system shall:

1. Allow developers to builds communication models based on the CML language in a

graphical environment.

Use cases: All use cases related to Create Terminal and Non-terminal shapes.

Use Case ID(s): 1.8_CrtTerm , 1.7_CrtFormNTerm, 1.6_CrtDvcNTerm,

1.5_CrtMdaAtchNTerm, 1.4_CrtRmtNTerm, 1.3_CrtLclNTerm,

1.2_CrtCnctnNTerm, 1.1_CrtUsrNTerm.

2. Provide functionality for dragging and dropping shape representations of CML

Terminals onto a canvas for composing CML Non-terminals.

 14

Use cases: Create Terminal.

Use Case ID(s): 1.8_CrtTerm.

Constraint: The system must present a user-friendly graphical interface with a drag

and drop interface for declaring terminals and non-terminals. Easy to use less than 30

seconds to learn.

3. Provide functionalities for connection the various CML Terminals among one

another where connections are allowed.

Use cases: All use cases related to Create Non-terminals.

Use Case ID(s): 1.7_CrtFormNTerm, 1.6_CrtDvcNTerm, 1.5_CrtMdaAtchNTerm,

1.4_CrtRmtNTerm, 1.3_CrtLclNTerm, 1.2_CrtCnctnNTerm, 1.1_CrtUsrNTerm.

Constraints: The system must implement the constraints of the CML language so

that the CVM developer is allowed to build only valid CVM communication models.

4. Allow developers to fill in the properties of Terminal shapes, such as person name,

contact ID, device capabilities, media type, file location, and so forth.

Use cases: Create Terminals.

Use Case ID(s): 1.8_CrtTerm.

Constraints: The system must clearly identify the mandatory items to be filled in

when a communication instance fails to get executed due to missing data.

5. Allow developers to save communication models to file system. Likewise, the system

shall be able to load saved models and display them on the canvas.

Use cases: Save Model, Load Model.

Use Case ID(s): 1.9_SaveMdl, 1.10_LoadMdl.

Constraints: The system must always save/load the model to/from disk unless

external conditions prevent doing so, e.g. disk full, disk failure.

6. Execute the communication model by instantiating the communication schema

defined by the CVM developer.

Use cases: Transform Model, Execute Model.

Use Case ID(s): 2.1_SchTransf, 2.2_ExecuteMdl.

Constraints: The validation of the communication schema must be completed in no

more than 5 seconds for models having on average 100 shapes or less.

 15

7. Request any missing data in the communication schema prior to its execution.

Use cases: Execute Model.

Use Case ID(s): 2.2_ExecuteMdl.

Constraints: The system must clearly identify the mandatory items to be filled in

when a communication instance fails to get executed due to missing data.

8. The types of communications supported by the system are:

a. Voice call

b. Instant Messaging

Use cases: Create Voice Call Communication Model, Create Chat Message Model.

Use Case ID(s): 1.11_CrtVoiceClCommMdl, 1.12_CrtChatCommMdl.

Constraints: The communication model is executed by making calls to the Skype

Internet-based telephony platform.

9. Security Use Case: Communication model consistency.

Use cases: Communication Model Consistency.

Use Case ID(s): 1.13_CommMdlConstcy.

Constraints: The system must validate if a person is bound more than once in
a communication model before executing it.

3.3 Non functional requirements

The user level requirements not directly related to functionality are:

1. Usability

a. The system must present a user-friendly graphical interface for the

development of communication schemas. The system shall be friend enough

that it takes no more than 30 seconds to figure out.

2. Reliability

a. The system must implement the constraints of the CML language so that the

CVM developer is allowed to build only valid CVM communication models.

3. Performance

a. The validation of the communication schema must be completed in no more

than 5 seconds for models having on average 100 shapes or less.

4. Supportability

 16

a. The system must clearly identify the mandatory items to be filled in when a

communication instance fails to get executed due to missing data.

5. Implementation

a. The software application must be developed using the Model-Driven

Software Development approach. In particular, the Eclipse GMF component.

b. The communication model is executed by making calls to the Skype Internet-

based telephony platform.

3.4 System Models

Use case model, Dynamic model and object model all consist for the System models. Finally

User interface mockups are shown in Appendixes A-G .

3.4.1 Use Case Model

Use Case Model

Description: This use case diagram shows all of the use case that will be implemented in this

project. It shows the possible actions that each kind of user can attempt in this system. It also

shows both of the main subsystems. Refer to figure A.1 in Appendix A.

3.4.2 Object Model

Minimal Class Diagram Of The Modeling Construction

Description The classes in this diagram represent all the non-terminal and terminal symbols

of the CML grammar, which is used in the creation of communication models in

RRCommSSys. This is a version compliant to the UML profile for the purpose of a better

understanding of GMF during the design phase. Refer to figure C.1 in Appendix C and figure

F.1 Appendix F.

Class Diagram Communication Modeling Environment

Description: The CME subsystem contains all the classes that are required for the modeling

environment. This diagram show all the classes as well as all the all the dependencies. It also

display the Model-View-Controller architecture pattern. This pattern is inherited from

Eclipse. Refer to figure C.3 in Appendix C and figure F.7 Appendix F.

 17

Class Diagram For The Schema Transformation Engine

Description: This is the class diagram for the Schema transformation Engine. Here are all the

classes that will be implemented for the transformation of schemas into instances. And

architecture pattern of Pipe and Filter is used for controlling of the stream of data between

parsers. Also a Singleton design pattern is used to limit the instances of our controller to one.

Refer to figure C.4 in Appendix C and figure F.4 Appendix F.

Class Diagram Synthesis Engine Subsystem.

Description: This is the class diagram for the Synthesis Engine subsystem. This are the

classes that will be implemented for the of the execution of the XCML. The Command design

pattern is used for more control over the calls that we will be making. Also the Abstract

Factory design pattern is used to allow in future development the replacement of the Skype

API for another platform, as well as to allow the system to run on multiple operating systems.

Refer to figure C.5 in Appendix C and figure F.5 Appendix F.

Repository Package Class Diagram

Description: This is the class diagram for the repository that will be implemented on our

project. This repository will hold the metadata as well as the information for parsing our files.

Refer to figure C.5 in Appendix C and figure F.6 Appendix F

3.4.3 Dynamic Model

Sequence For a Schema Transformation.
Description: This sequence diagram shows the sequence of object involved in the execution

of a schema. It shows each of the object that are affected in this execution .Refer to figure D.3

in Appendix D.

Sequence For an Instance Transformation.
Description: This sequence diagram shows the sequence of object involved in the execution

of an instance. It shows each of the object that are affected in this execution. Refer to figure

D.4 in Appendix D.

Sequence For Voice Call.
Description: This sequence diagram shows the sequence of object involved in the creation of

a voice call model. It shows each of the object that are affected in the creation of this model.

Refer to figure D.5 in Appendix D.

 18

Sequence For Chat Message.
Description: This sequence diagram shows the sequence of object involved in the creation of

a chat message model. It shows each of the object that are affected in the creation of this

model. Refer to figure D.6 in Appendix D.

Sequence For Create Local Non-Terminal.
Description: This sequence diagram shows the sequence of object involved in the creation of

a non-terminal in the modeling environment. It shows each of the object that are affected in

the creation of this model. Refer to figure D.7 in Appendix D.

Sequence For Create Connection.
Description: This sequence diagram shows the sequence of object involved in the creation of

a connection in the modeling environment. It shows each of the object that are affected in the

creation of this model. Refer to figure D.8 in Appendix D.

Sequence For Create Terminal.
Description: This sequence diagram shows the sequence of object involved in the creation of

a terminal in the modeling environment. It shows each of the object that are affected in the

creation of this model. Refer to figure D.9 in Appendix D.

Sequence For Save File GMF.
Description: This sequence diagram shows the sequence of object involved in the saving of a

model file. It shows each of the object that are affected in the saving of a model. Refer to

figure D.10 in Appendix D.

3.4.4 User Interfaces

Load Request Form.
Description: This is the form that will first appear when the application is run. If the user

clicks the ‘Browse’ button it will bring about the file open dialog. Refer to Figure E.1.1 in

Appendix E.

Impute Request Form.
Description: This is the form that will be displayed if the schema that is executed is missing

some information, that is if is not an instance. Refer to figure E.1.2 in Appendix E.

File System open file Dialog.

 19

Description: This is the window that will prompt the user for the file to load. This is handled

by the operating system. Refer to figure E.1.3 in Appendix E.

Visual Modeling Environment
Descrition: This is what the modeling environment looks like. This is where the

communication models will be created. It is a matter of drag and drop the shape into the

canvas and connect them. Refer to figure E.1.4 in Appendix E.

3.5 Validation of the Analysis Model

3.5.1 Test Cases

Identifier: TC-1.1_CrtUsrNTerm

Owner/Creator: Frank Hernandez

Version: V2

Name: Test Create User Schema Non Terminal Use Case.

Requirement ID: 1.1_CrtUsrNTerm

Purpose: The purpose of this test case is to test the Create User Schema Non

Terminal Use Case

Dependencies: None

Environment/
Configuration:

None

Initialization: The Communication Modeling Environment must be initialized. Terminals
and non-terminals for a Local non-terminal and Connection non-terminal
must be on the canvas. Local non-terminal is composed of one Connection
terminal connected to a Medium terminal connected to a Device connected
isAttached connected to a local Person.

Finalization: If the modeling fails the application must be reloaded.

Actions: Try to connect the Device terminal to the connection non-terminal.

Input data: Attempts to perform the actions specified on the ‘Action’ section.

Expected results: The Connection is drawn onto the canvas.

Identifier: TC-1.2_CrtCnctnNTerm

 20

Owner/Creator: Frank Hernandez

Version: V2

Name: Test Create Connection Non-Terminal

Requirement ID: 1.2_CrtCnctnNTerm
Purpose: The purpose of this test case is to test the Create Connection Non-Terminal

Usecase.

Dependencies: None
Environment/
Configuration:

None

Initialization: The Communication Modeling Environment must be initialized prior the
execution of this test.
Non-terminal for a MediaAttached non-terminal must be on the canvas.
One or more Remote non-terminal must be on the canvas. A MediaAttached
is composed of at least one Medium terminal. A Remote non-terminal
consist of Person connected to isAttached to Device.

Finalization: If no shape is drawn the CME must be checked before any other test takes
place.

Actions: Drag Connection terminal onto the canvas.
Drag connection, connecting Medium to the Connection terminal.
Drag MedToCon and connect Conenction to a Medium

Input data: Attempts to perform the actions specified on the ‘Action’ section.

Expected results: The Connection terminal is drawn on the canvas. The connections are
drawn between the Connection terminal and the MediaAttached terminal.

Identifier: TC-1.3_CrtLclNTerm

Owner/Creator: Alejandro Ortiz

Version: V1

Name: Test Create Local Non-Terminal

Requirement ID: 1.3_CrtLclNTerm
Purpose: The purpose of this test case is to test the Create Local Non-Terminal Use

Case.

Dependencies: None
Environment/
Configuration:

None

Initialization: The Communication Modeling Environment must be initialized prior the

 21

execution of this test.

Finalization: If no shape is drawn the CME must be checked before any other test takes
place.

Actions: Drag Person terminal onto the canvas.
Drag isAttahced terminal onto the canvas.
Drag PtoIACon connecting the Person terminal to the isAttached terminal.
Drag a Device terminal onto the canvas.
Drag IAToDevice connection and connect the Device to the isAttached.

Input data: Attempts to perform the actions specified on the ‘Action’ section.

Expected results: The Person terminal is drawn on the canvas. The isAttached terminal is

drawn on the canvas. The connections are drawn between the Person
terminal and the isAttached terminal.

Identifier: TC-1.4_CrtLclNTerm

Owner/Creator: Alejandro Ortiz

Version: V1

Name: Test Create Remote Non-Terminal

Requirement ID: 1.4_CrtRmtNTerm
Purpose: The purpose of this test case is to test the Create Remote Non-Terminal Use

Case.

Dependencies: None

Environment/
Configuration:

None

Initialization: The Communication Modeling Environment must be initialized prior the
execution of this test.

Finalization: If no shape is drawn the CME must be checked before any other test takes
place.

Actions: Drag Person terminal onto the canvas.
Drag isAttahced terminal onto the canvas.
Drag PtoIACon connecting the Person terminal to the isAttached terminal.

Input data: Attempts to perform the actions specified on the ‘Action’ section.

Expected results: The Person terminal is drawn on the canvas. The isAttached terminal is

drawn on the canvas. The connections are drawn between the Person
terminal and the isAttached terminal.

 22

Identifier: TC-1.5_CrtMdaAtchNTerm

Owner/Creator: Frank Hernandez

Version: V1

Name: Test Create MediaAttached Non-Terminal

Requirement ID: 1.5_CrtMdaAtchNTerm

Purpose: The purpose of this test case is to test the Create MediaAttached Non-

Terminal Use Case.

Dependencies: None

Environment/
Configuration:

None

Initialization: The Communication Modeling Environment must be initialized prior the
execution of this test. Non-terminal for one or more Form non-terminal
must be on the canvas already. A Form non-terminal consists of one or
more Medium terminals.

Finalization: If no shape is drawn, the CME must be checked before any other test takes
place.

Actions: Drag Medium terminal onto the canvas.
Drag connection line connecting the Medium terminal to the Connection
terminal.

Input data: Attempts to perform the actions specified on the ‘Action’ section.

Expected results: The Medium shape is drawn on the canvas, as well as the connection to the
Form non-terminal.

Identifier: TC-1.6_CrtDvcNTerm

Owner/Creator: Ariel Carry

Version: V1

Name: Test Create Device Non-Terminal Use Case.

Requirement ID: 1.6_CrtDvcNTerm

Purpose: The purpose of this test case is to test the Create Device Non-Terminal

Dependencies: None

 23

Environment/
Configuration:

None

Initialization: The Communication Modeling Environment must be initialized prior the
execution of this test.

Finalization: If no shape is drawn, the CME must be checked before any other test takes
place.

Actions: Drag Capability terminal onto the canvas.
Drag Device terminal onto the canvas.
Drag CapToDev line connecting the Capability terminal to the Device
terminal.

Input data: Attempts to perform the actions specified on the ‘Action’ section.

Expected results: The Capability shape and the Device shape are drawn on the canvas, as well
as the connection from Device to Capability.

Identifier: TC-1.8_CrtTerm

Owner/Creator: Frank Hernandez

Version: V1

Name: Test Create Terminal

Requirement ID: 1.8_CrtTerm

Purpose: The purpose of this test case is to test the Create Terminal Use Case.

Dependencies: None

Environment/
Configuration:

None

Initialization: The Communication Modeling Environment must be initialized prior the
execution of this test.

Finalization: If no shape is drawn, the CME must be checked before any other test takes
place.

Actions: Select Terminal from the shape palette in the CME.
Drag the Terminal onto the canvas.

Input data: Attempts to perform the actions specified on the ‘Action’ section.

Expected results: The Terminal shape is drawn on the canvas.

 24

Identifier: TC-1.9_SaveMdl

Owner/Creator: Frank Hernandez

Version: V1

Name: Test Save Model Use Case.

Requirement ID: 1.9_SaveMdl

Purpose: The purpose of this test case is to test the Save Model Use Case

Dependencies: None

Environment/
Configuration:

None

Initialization: The Communication Modeling Environment must be initialized prior the
execution of this test.

Finalization: If the save fails the application must be checked.

Actions: Select Save Option from the File Menu.
Enter Filename.

Input data: Attempts to perform the actions specified on the ‘Action’ section.

Expected results: The file is saved.

Identifier: TC-1.10_LoadMdl

Owner/Creator: Alejandro Ortiz

Version: V1

Name: Test Load Model Use Case.

Requirement ID: 1.10_LoadMdl

Purpose: The purpose of this test case is to test the Load Model Use Case

Dependencies: None

Environment/
Configuration:

None

Initialization: The Communication Modeling Environment must be initialized prior the
execution of this test.

Finalization: If the load fails the application must be checked.

 25

Actions: Select Load Option from the File Menu.
Select the file and load it.

Input data: Attempts to perform the actions specified on the ‘Action’ section.

Expected results: The file is loaded.

Identifier: TC-2.1_SchTransf

Owner/Creator: Ariel Carry

Version: V1

Name: Test Schema Transformation Use Case.

Requirement ID: 2.1_SchTransf

Purpose: The purpose of this test case is to test the Schema Transformation Use Case

Dependencies: None

Environment/
Configuration:

None

Initialization: The Schema Transformation Environment most be initialized

Finalization: If the transformation fails the application must be reloaded.

Actions: Convert an incomplete instance into a complete one.

Input data: Attempts to perform the actions specified on the ‘Action’ section.

Expected results: The schema is transformed into am instance.

Identifier: TC-2.2_ExecuteModel

Owner/Creator: Ariel Carry

Version: V1

Name: Test Execute Model Use Case.

Requirement ID: 2.2_ExecuteModel

Purpose: The purpose of this test case is to test the Execute Model Use Case

Dependencies: None

 26

Environment/
Configuration:

None

Initialization: The Synthesis Engine must be initialized

Finalization: If the execution fails the application must be reloaded.

Actions: Execute instance to Skype calls.

Input data: Attempts to perform the actions specified on the ‘Action’ section.

Expected results: The instance is executed and Skype calls are made.

Identifier: TC-1.11_CrtVoiceClCommMdl

Owner/Creator: Frank Hernandez

Version: V1

Name: Test Create Voice Call Communication Model Use Case.

Requirement ID: 1.11_CrtVoiceClCommMdl

Purpose: The purpose of this test case is to test the Create Voice Call Communication

Model Use Case

Dependencies: None

Environment/
Configuration:

None

Initialization: The Communication Modeling Environment must be initialized.

Finalization: If the modeling fails the application must be reloaded.

Actions: 1. Drag Person Terminal to the Canvas.
2. Drag isAttached Terminal to the Canvas.
3. Connect Person to isAttached.
4. Drag Device Terminal to the Canvas.
5. Connect Device to isAttahced.
6. Repeat 1-5 For next user.
7. Drag Connection Terminal to the canvas.
8. Connect Connection Terminal to both devices.

Input data: Attempts to perform the actions specified on the ‘Action’ section.

Expected results: All the terminals and connections are drawn on the canvas.

 27

Identifier: TC-1.12_CrtChatCommMdl

Owner/Creator: Alejandro Ortiz

Version: V1

Name: Test Create Chat Message Model Use Case.

Requirement ID: 1.12_CrtChatCommMdl

Purpose: The purpose of this test case is to test the Create Chat Message Model Use
Case

Dependencies: None

Environment/
Configuration:

None

Initialization: The Communication Modeling Environment must be initialized.

Finalization: If the modeling fails the application must be reloaded.

Actions: 1. Drag Person Terminal to the Canvas.
2. Drag isAttached Terminal to the Canvas.
3. Connect Person to isAttached.
4. Drag Device Terminal to the Canvas.
5. Connect Device to isAttahced.
6. Repeat 1-5 For next user.
7. Drag Connection Terminal to the canvas.
8. Connect Connection Terminal to both devices.
9. Drag Medium Terminal onto the canvas.
10. Connect Medium to the Connection Terminal

Input data: Attempts to perform the actions specified on the ‘Action’ section.

Expected results: All the terminals and connections are drawn on the canvas.

3.5.2 Analysis Model

Analysis Domain Model Inspection Yes No
Completeness: The concepts are sufficient to cover the scope of the content
specified.

X

Correctness: The description of domain concepts is accurate; the algorithms will
produce the expected result, i.e. There must be both a caller and a called.

X

Consistency: Model elements are consistent with the company’s definition. X

Analysis Application Model Inspection Yes No
Completeness: The ideas expressed in each use case can be represented by the
concepts and algorithms in the model.

X

Correctness: ‘Experts’ agree with the attributes and behaviors assigned to each X

 28

concept.
Consistency: Where there are multiple ways to represent a concept of action those
ways are equivalent.

X

Syntax Check for Object Diagram Yes No
Check objects and links. X
Ensure that there is only one object per rectangle. X
Ensure that no attributes or operations are showed on minimal diagrams. X
Ensure that no multiplicity is shown on minimal diagrams. X
Ensure that note are correctly represented on the diagram. X

Semantic Check for Object Diagram Yes No
Ensure that example that there are not too many object diagrams.. X

Semantic Check for Object Diagram Yes No
Ensure that example object diagrams are drawn whenever needed to clarify links. X
Relate the objects on the object diagram to other diagrams whose meanings the
object diagrams are supposed to clarify.

X

Syntax Checks for Sequence Diagrams Yes No
Check the correctness of all the objects on the sequence diagram. X
Check the correctness of all actors on the sequence diagram. X
Check object-oriented interaction. X
Check the message types shown in the sequence diagram. X
Check the message of the message signatures and return values. X
Check syntax of multiple messages. X
Check for multiple objects on the sequence diagram. X

Semantic Checks for Sequence Diagrams Yes No
Check the meaning behind the sequence diagram. X
Check the meaning behind the focus of control. X
Check to see if the sequence diagram depicts creation and destruction of objects. X
Check to see if sequence diagram is based on a pattern. X
Check to see if there are alternative flows and create separate sequence diagrams
for them.

 X

Aesthetic Checks for Sequence Diagrams Yes No
Ensure that the sequence diagram shows a cohesive set of interactions between
collaboration objects.

X

Ensure that the sequence diagrams have sufficient notes and other annotations to
explain the technicality of the diagrams.

X

Check the number of objects. X
Check the number of messages. X

 29

3.5.3 Structure Walkthrough

Use Case Model Yes No
There is a use case in the model for every use case. X
Every actor interacts with the specified use case. X
Every Use Case extends the required use case in the model. X
Every Use Case includes the required use case in the model. X
Every Use Case name in the diagram is relevant to the use cases. X

Dynamic Diagrams Yes No
There is a sequence diagram for every use case. X
Every noun maps to an object in the sequence X
Every verb maps to an interaction in the sequence diagram. X
Every path was followed. X

Object Model Yes No
Every class represents a noun in the use case. X
Connectivity is maintained from the use case to class diagram. X
Dependency was showed with relations. X

Test Case – Use Case Model Comments PASS FAIL
TC-1.1_CrtUsrNTerm X
TC-1.2_CrtCnctnNTerm X
TC-1.3_CrtLclNTerm X
TC-1.4_CrtLclNTerm X
TC-1.6_CrtDvcNTerm X
TC-1.8_CrtTerm X
TC-1.9_SaveMdl X
TC-1.10_LoadMdl X
TC-2.1_SchTransf X
TC-2.2_ExecuteModel X
TC-1.11_CrtVoiceClCommMdl X
TC-1.12_CrtChatCommMdl X
TC-1.13_CommMdlConstcy X

Test Case – Minimal Class Diagram Comments PASS FAIL
TC-1.1_CrtUsrNTerm X
TC-1.2_CrtCnctnNTerm X
TC-1.3_CrtLclNTerm X
TC-1.4_CrtLclNTerm X
TC-1.6_CrtDvcNTerm X
TC-1.8_CrtTerm X
TC-1.9_SaveMdl X
TC-1.10_LoadMdl X
TC-2.1_SchTransf X
TC-2.2_ExecuteModel X

 30

TC-1.11_CrtVoiceClCommMdl X
TC-1.12_CrtChatCommMdl X
TC-1.13_CommMdlConstcy X

Test Case – Sequence Diagrams Comments PASS FAIL
TC-1.1_CrtUsrNTerm X
TC-1.2_CrtCnctnNTerm X
TC-1.3_CrtLclNTerm X
TC-1.4_CrtLclNTerm X
TC-1.6_CrtDvcNTerm X
TC-1.8_CrtTerm X
TC-1.9_SaveMdl X
TC-1.10_LoadMdl X
TC-2.1_SchTransf X
TC-2.2_ExecuteModel X
TC-1.11_CrtVoiceClCommMdl X
TC-1.12_CrtChatCommMdl X
TC-1.13_CommMdlConstcy X

 31

4. Proposed Software Architecture

The RRCommSSys will be broken down into several subsystems. These subsystems will be

represented in a package diagram, according to two architectural patterns that were chosen

with proper justification. Then the metamodel for the domain specific language will be

specified. Also, the architecture will be represented by some UML profiles, which will

consequently lead to the transformations expected from the architecture to the platform.

Finally, the subsystems will be explained briefly.

4.1 Overview – Package Diagram

The following figure presents the package diagram of the proposed system:

User Communication Interface

Communication Modeling Environment Schema Transformation Environment

Repository

Synthesis EngineSkype API

SE_Interface
<<UC-SE_Interface>>

 32

Fig 4.1 RRCommSSys Package diagram

Description: This is the package diagram for RRCommSSys. It displays the

subsytem decomposition of the architecture. Also at first glance it can be seen that we

will use a Repository Architecture pattern. This will hold the metadata for the models

as well as the rule for our modeling languages.

Subsystems:

User Communication Interface – This is one of the main subsystems. This subsystems

contains all of the subsystems required to handle the creation and the parsing of user

communication models. This subsystem is composed of the Communication Modeling

Environment subsystem, the Schema Transformation Environment subsystem and the

Repository subsystem.

Communication Modeling Environment – This subsystem deals with all that is the related to

the modeling environment. This subsystem represents in the case of this project the Eclipse

GMF and EMF. This subsystems is inherently Model-View-Control (MVC) as it inherits this

from Eclipse itself.

Schema Transformation Environment – This subsystems contains all the modules and clases

related to the transformation of schemas into instances. This subsystem handles the

conversion GXML into XCML that will then be interpreted for execution. It also handles the

completion of any incomplete schema into a complete one, which it is then referred to as an

instance.

Synthesis Engine – This subsystem hold all the classes required to transform XCML syntax

into execution calls that can then be interpreted by a Communications Virtual Machine. In the

case of this project this CVM is Skpye.

Skype API – This subsystem represent our Communication Virtual Machine. This subsystem

represents the Skype tool that we will be using in this project.

RRCommSSys uses three architectural patterns justified below:

 33

Pipe and Filter – This pattern is essential for capturing the processing functionality needed for

our system. Communication models have several stages and formats, so we push the input

through a series of filters that process the models and outputs the desired format. It also

simplifies implementation by having several stages in which the data will be in, making filter

implementation and testing much easier. In conclusion, it comprises of a Pipe, Filter, Data

Source, and Data Sink Subsystems.

Model View Controller – This pattern will handle the front-end interface with the user. It will

handle user input, which will be processed by the model and later handled by the Pipe and

Filter architecture. After all the processing is done, the output can be displayed as different

views. In conclusion, it comprises of a Model, View, and Controller Subsystems. This pattern

was chosen also because the target implementation platform GMF Eclipse is also MVC.

Façade pattern – This pattern will simplify the communication between the subsystems. It

will provide a simplified interface for subsystem to communicate with one another.

 34

4.2 Metamodel for the DSL

ShapesDiagram

Connections

CVM_Shapes

CVM_Person
<<CVM_Entity>>

CVM_conIAToP
<<CVM_Control>>

CVM_Capability
<<CVM_Entity>>

CVM_isAttached
<<CVM_Entity>>

CVM_conDevToCap
<<CVM_Control>>

CVM_conIAToDev
<<CVM_Control>>

CVM_Device
<<CVM_Entity>>

CVM_Medium
<<CVM_Entity>>

CVM_conDevToCon
<<CVM_Control>>

CVM_conMedToCon
<<CVM_Control>>

CVM_Form
<<CVM_Entity>>

CVM_Connection
<<CVM_Entity>>

CVM_conFormToCon
<<CVM_Control>>

Canvas for the GMF required to hold everything.

Simplifies the association of connections and shapes.CVM_Shapes
CVM_ConMaster

source_conIAToP

target_conIAToP

target_conDevToCap

source_conIAToDev

source_conDevToCap

target_conIAToDev

source_conDevToCon

source_conMedToCon

target_conDevToCon

target_conMedToCon

source_conFromToCon

target_conFormToCon

Fig 4.2. Minimal class diagram for the metamodel as input into Eclipse GMF

Description The classes in this diagram represent all the non-terminal and terminal symbols

of the CML grammar, which is used in the creation of communication models in

RRCommSSys.

 35

Person_Terminal
<<CVM_Person>>

IsAttached_Terminal
<<CVM_IsAttached>>

AIToP
<<CVM_conIAToP>>

Device_Terminal
<<CVM_Device>>

Connection_Terminal
<<CVM_Connection>>

AIToDev
<<CVM_conIAToDev>>

DevToCon

<<CVM_conDevToCon>>

Medium_Terminal
<<CVM_Medium>>

MedToCon
<<CVM_conMedToCon>>

Master_Terminal
<<CVM_Terminal>>

Capability_Terminal
<<CVM_Capability>>

CapToDev
<<CVM_conCapToDev>>

Fig 4.3. Minimal class diagram compliant the UML profile for the metamodel

Description The classes in this diagram represent all the non-terminal and terminal symbols

of the CML grammar, which is used in the creation of communication models in

RRCommSSys. This is a version compliant to the UML profile for the purpose of a better

understanding of GMF during the design phase.

 36

4.3 UML profiles

Fig 2.3 Profile For the Modeling Constructing (GMF Side)

Description: This UML 2 profile represents the metamodel. This profile gives a better

representation of the metamodel. Used in the design phase to me the metamodel more

manageable.

 37

Fig. 4.4 Profile For Execution Subsystem.

Description: This profile represent the execution of a GML file. This profile is used to

describe the conversion form GML to XCML and the transformation into CVM calls.

Fig 4.5 Profile For the Communication Modeling Environment.(CME)

 38

Description: This is the profile for the Communication Modeling Environment. It describes

the main prototypes of the system as well as the architecture to be used in this subsystem. The

Model-View-Controller architecture is used for this subsystem.

 39

4.4 Generative architecture

Fig. 4.5 RRCommSSys Generative Architecture

The previous figure shows the transformations carried out to the target platform. Essentially,

the presentation objects are paired back to the Java Swing libraries which implement the user

interface. Similarly, the model creation concepts are transformed to classes that abstract out

the communication model, for example, the CML metamodel is transformed to a GMF ecore

definition file, which in turn is fed to the Eclipse GMF target platform. As can also be seen

on the figure, the Data Sink is transformed to a X-CML model, which complies with the

CML language in XML format. This XML file is later used in the execution of the model by

the Skype API Caller to make the actual call to the Skype Library, which renders the

communication.

 40

4.5 Subsystem Decomposition

Transformer – There will be many classes that will process data, performing a function to it

and output it back. Many of these will be associated with parsing communication models

from one format and turn it into another. This package is only coupled with the Pipe

subsystem, which will simply feed the data to the Filter, and then receive the processed

version of it back from the Filter class.

Data source – This subsystem will be the entry point to the system internally. It will start

deliver the data to the Pipe subsystem, starting the chain. The data will be supplied by the

Model, after it is first inputted by the user to a Controller.

Pipe – The Pipe subsystem will be in charge of delivering the data to the proper subsystems.

It will receive the initial data, along with the operations needed to be performed to it, and a

final destination. These operations are sequential and are composed of one or more Filters.

This subsystem will ensure the operations will be made in proper order, and deliver the result

to the data sink specified.

Data sink – This subsystem represents the final stage of processed input. It performs a last

function to the data supplied, reflecting the original request that was made by the user.

Model – It is the core of the system. It will create the views necessary for the user to interact

with the system and make a request. The Controller associated with that view will deliver the

request back to the Model, which will add some extra information. This result will be

delivered properly to the data source subsystem.

View – This subsystem displays the current data to the user. Each class contains a different

way of displaying the same data provided by the Model, and will all initialize a controller that

will capture all user interaction with the data.

Controller – There will be one Controller object for each view that is active on the system.

This subsystem is in charge of receiving user input and delivering it to the Model. It is also in

charge of listening for messages coming from the Model that need to be reflected on its

associated view, which will be processed and delivered to the view.

 41

Skype
<<Application>>

Eclipse GMF
<<Plug In>>

Eclipse EMF
<<Plug In>>

Eclipse GEF
<<Plug In>>

RRComSys
<<Application>>

Fig 4.1 Component Diagram For RRComSys

Description: This is component diagram displaying all the PSM that are required by our

application.

4.6 Validation of the System Model

4.6.1 Check List

System Checks Yes No
Every subsystem was touched by at least one use case. X
Every noun in each of the use cases can be mapped to at least one class inside one
of the subsystems.

X

Each subsystem has annotations for clarification. X
Check What does an operation mean? Ensure that the meaning of the operation is
reflected in its name and format.

X

All sequence diagrams touch all the subsystems. X
Subsystems compliant with each of the profiles. X
At least one of the subsystems depicts the architecture pattern used in the
application.

X

Architecture is annotated in the subsystems with notes. X
Check to see if the operations of a class are overloaded. X
Subsystem relations for a specific subsystem are displayed through the use of
minimal subsystem packages.

X

Check the name of the subsystems matches the specified name in the architecture
diagram.

X

Check for dependencies among subsystem. X
Check for relations between subsystems. X

 42

4.6.2 Structure Walkthrough

Requirements Yes No
Satisfies Non-Functional requirements. X
Satisfies Functional Requirements. X

Test Case – Non Functional Comments PASS FAIL
TC-1.1_CrtUsrNTerm X
TC-1.2_CrtCnctnNTerm X
TC-1.3_CrtLclNTerm X
TC-1.4_CrtLclNTerm X
TC-1.6_CrtDvcNTerm X
TC-1.8_CrtTerm X
TC-1.9_SaveMdl X
TC-1.10_LoadMdl X
TC-2.1_SchTransf X
TC-2.2_ExecuteModel X
TC-1.11_CrtVoiceClCommMdl X
TC-1.12_CrtChatCommMdl X
TC-1.13_CommMdlConstcy X

Test Case – Functional Comments PASS FAIL
TC-1.1_CrtUsrNTerm X
TC-1.2_CrtCnctnNTerm X
TC-1.3_CrtLclNTerm X
TC-1.4_CrtLclNTerm X
TC-1.6_CrtDvcNTerm X
TC-1.8_CrtTerm X
TC-1.9_SaveMdl X
TC-1.10_LoadMdl X
TC-2.1_SchTransf X
TC-2.2_ExecuteModel X
TC-1.11_CrtVoiceClCommMdl X
TC-1.12_CrtChatCommMdl X
TC-1.13_CommMdlConstcy X

 43

5. Object Design

This section will cover in detail the main view the structure of the application to be designed.

It will detail the basic idea of the functionality of the software. It will also discuss some of the

design patterns chosen for the implementation of the sections of RRCommSSys. This section

will explain some of the reasons for choosing these patterns mainly the ones that made them a

valid choice.

This section will also explain in detail the classes that will be created. It will explain their

functionality and purpose. It will also show some of the behavior of the system under some

user interactions.

5.1 Overview

Refer to Appendix C for minimal class diagrams.

5.1.1 Brief Class Description
Modeling Environment Classes:

EclipesMAndITemp: This class handles the operation relevant to the menus of the

application. Refer to the class diagram F.7 on Appendix F.

EclipseVisualEditor: This class handles the interaction of the user and the modeling

environment. Refer to the class diagram F.7 on Appendix F.

EclipseVisualParser: This class handles the conversion of visual input into GML files. Refer

to the class diagram F.7 on Appendix F.

EclipseVisualLoader: This class handles the loading of the Communication Modeling

Environment. Refer to the class diagram F.7 on Appendix F.

EclipseVEController: This is the controller for the visual environment. Refer to the class

diagram F.7 on Appendix F.

EclipseMenuSysAndDisp: This class handles the fixed menu systems and display. Refer to

the class diagram F.7 on Appendix F.

 44

CMEController: This is the controller of the Communication Modeling Environment. Refer

to the class diagram F.7 on Appendix F.

EclipseModelTransformer: The eclipse model transformer is that class that will handle the

transformation from GML to XGML that is understood by Eclipse. Refer to the class diagram

F.7 on Appendix F.

Model Creation Classes:
Modeling Subsystem: The modeling subsystem includes all the classes created as part of the

metamodel for Eclipse’s Graphical Modeling Framework (GMF).

Master_Terminal: This is the parent class for all the other terminal classes. Used in GMF

for simplifying connections between terminals. Refer to the class diagram F.1 on Appendix F.

Person_Terminal: Holds the information of each person terminal that is created in the

model. Required by GMF to create a shape for this class.

Medium_Terminal: Holds the information of each medium terminal that is created in the

model. Required by GMF to create a shape for this class. Refer to the class diagram F.1 on

Appendix F.

Connection_Terminal: Holds the information of each Connection terminal that is created in

the model. Required by GMF to create a shape for this class. Refer to the class diagram F.1

on Appendix F.

Device_Terminal: Holds the information of each Device terminal that is created in the

model. Required by GMF to create a shape for this class. Refer to the class diagram F.1 on

Appendix F.

IsAttached_Terminal: Holds the information of each isAttached terminal that is created in

the model. Required by GMF to create a shape for this class. Refer to the class diagram F.1

on Appendix F.

 45

Capability_Terminal: Holds the information of each Capability terminal that is created in

the model. Required by GMF to create a shape for this class. Refer to the class diagram F.1

on Appendix F.

Execution Subsystem: The execution subsystem includes all the classes that will be created

for the handling of the execution of a model.

FileHandler: This class contains all the functionality for loading files. This contains the code

for calling the file system’s file open mechanisms. Refer to the class diagram F.4 on

Appendix F and Appendix G for class interface.

StreamHandler: This class contains all the functionality for handling the transfer of data

among the parsers. Refer to the class diagram F.4 on Appendix F and Appendix G for class

interface.

MasterParser: This class is just the parent class for all the parsers. It contains functionality

that is the same for all the other parsers. Refer to the class diagram F.4 on Appendix F and

Appendix G for class interface.

GMLToCMLTransformer: This class handles the transformation from a GML XML file to

a XCML file. It checks for the validity of the GXML and parses it to XCML. Refer to the

class diagram F.4 on Appendix F and Appendix G for class interface.

SchemaTransformaer: This class handles the transformation from a schema into an

instance. It also contains the functionality for prompting for the required input from the user.

Refer to the class diagram F.4 on Appendix F and Appendix G for class interface.

SynthesisEngine: This class handles the creation of Operation (Commands) and binds them

to SkypePtHandler. Refer to the class diagram F.5 on Appendix F and Appendix G for class

interface.

 46

SkypePtHandler: This class contains the all the Operations that have been bind for

execution. Refer to the class diagram F.5 on Appendix F and Appendix G for class interface.

ConcreteOperation: This class encapsulates a Skype API call for later execution or undoing.

Refer to the class diagram F.5 on Appendix F and Appendix G for class interface.

Operation: This is the interface to be implemented by ConcreteOperation. Refer to the class

diagram F.5 on Appendix F and Appendix G for class interface.

SkypeOperationInvoker: This class actually executes or undoes Operations. Refer to the

class diagram F.5 on Appendix F and Appendix G for class interface.

RP_AccessInterface: This is the Repository subsystem interface for the implementation of

the façade pattern. Refer to the class diagram F.6 on Appendix F and Appendix G for class

interface.

InformationRepository: This class handles all the information regarding the rules for the

communications language. Refer to the class diagram F.6 on Appendix F and Appendix G for

class interface.

5.1.2 Design Patterns

Singleton: Design pattern used to restrict instantiation of a class to one object. This design

patter was chosen for the StreamHandler mainly because we did not want multiple copies of

this object floating around wasting memory. Since this is our stream manager we only need

one. Even though during implementation we could have decided to only have one instance of

this object it was not guaranteed that it would hold especially if someone else tries to update

on top of this. This design pattern was the best to make sure that no extra copies of the

StreamHandler were floating around at all times.

Command: Design patter in which objects are used to represent actions. A command object

encapsulates an action and its parameters. This command patterns was chosen to guarantee a

 47

control over the execution calls to the Skype API. This way we have control when and

whether o not a action gets to execute, thus preventing or canceling undesirable behavior, or

even threats.

Abstract Factory: This command allow for portability. This was chosen to allow for Skype

to be replaced by other platforms without the user realizing that a change has occurred. This

will allow for a future Communication Virtual Machine to replace Skype with little

modification to the code.

5.2 Object Interaction

5.2.1 Statechart For StreamHandler (Pipe)

Application Ready

[Start]

Error Handled

GMLXML Not Loaded

[Load Failed]

[Load Success]

Schema Not Validated

Skype Calls Handled

[File was an instance] / convertToSkype()

[End Application]

Input Requestd

[File was schema] / requestInput()

Input Entered [Still a Schema] / requestInput()

Input Entered [Instace Completed] / convertToSkype()

[Canceled]

All the errors that
occur cause the application
to stop.
i.e If the input is not valid
the application will inform the
user of the error.

GMLXML Loaded

The application ends when
either:
1- The Schema s prossed
successfully.
2- The user cancles the
input requiest to complete
the schema.

convertToXCML [Transformation Success] / validateSchema()

convertToXCML [Transformation Failed]

Fig 5.2.3 Statechart For StreamHandler.

5.3 Detailed Class Design

Modeling Environment Classes:

EclipesMAndITemp: This class handles the operation relevant to the menus of the

application. This class handles all the templates for the domain specific menus and interfaces

of the application. Refer to the class diagram F.7 on Appendix F.

 48

EclipseVisualEditor: This class handles the interaction of the user and the modeling

environment. This is the view that the user will deal with when creating models. Refer to the

class diagram F.7 on Appendix F.

EclipseVisualParser: This class handles the conversion of visual input into GML files. This

class parses the GML back from the GML file into shapes and connections. It also converst

any changes in the EclipseVisualEditor into the GML file. Refer to the class diagram F.7 on

Appendix F.

EclipseVisualLoader: This class handles the loading of the Communication Modeling

Environment. This calls loads all the information required by the eclipse GMF to create the

modeling environment. This information is loaded from the repository and it can be

previously save files as well as the metamodel for the application. Refer to the class diagram

F.7 on Appendix F.

EclipseVEController: This is the controller for the visual environment. This handles the

interaction between the model EclipseVisualParser and the view EclipseVisualEditor.

Refer to the class diagram F.7 on Appendix F.

EclipseMenuSysAndDisp: This class handles the fixed menu systems and display. This will

control what menus get to be accessible in the CME. Refer to the class diagram F.7 on

Appendix F.

CMEController: This is the controller of the Communication Modeling Environment. It

handles the transfer of information between the models and the EclipseVisualEditor, as well

as the EclipseVisualLoader and EclipesMAndITemp. Refer to the class diagram F.7 on

Appendix F.

EclipseModelTransformer: The eclipse model transformer is that class that will handle the

transformation from GML to XGML that is understood by Eclipse. This class will convert the

file generated by the EclipseVisualParser into a file containing information more specific to

the Eclipse modeling framework. Refer to the class diagram F.7 on Appendix F.

 49

Model Creation Classes:

Master_Terminal: This is the parent class for all the other terminal classes. Used in GMF

for simplifying connections between terminals. This class purpose is to create a main holder

for all the terminals in GMF. Refer to the class diagram F.1 on Appendix F.

Person_Terminal: Holds the information of each person terminal that is created in the

model. Required by GMF to create a shape for this class. The purpose of this class is to

generate a Person shape in GMF as well as hold all the information required from a Person

terminal. This information includes the person’s name, the person’s id, and the person’s role.

Refer to the class diagram F.1 on Appendix F.

Medium_Terminal: Holds the information of each medium terminal that is created in the

model. Required by GMF to create a shape for this class. The purpose of this class is to

generate a Medium shape in GMF as well as hold all the information required for a Medium

terminal. This information includes the medium type, the suggested application, and the voice

command. Refer to the class diagram F.1 on Appendix F.

Connection_Terminal: Holds the information of each connection terminal that is created in

the model. Required by GMF to create a shape for this class. The purpose of this class is to

generate a Connection shape in GMF as well as hold all the information required for a

Connection terminal. This information includes the connection id and the bandwidth. Refer to

the class diagram F.1 on Appendix F.

Device_Terminal: Holds the information of each device terminal that is created in the

model. Required by GMF to create a shape for this class. The purpose of this class is to

generate a Device shape in GMF as well as hold all the information required for a Device

terminal. This information includes the device’s id. Refer to the class diagram F.1 on

Appendix F.

IsAttached_Terminal: Holds the information of each isAttached terminal that is created in

the model. Required by GMF to create a shape for this class. The purpose of this class is to

generate a isAttached shape in GMF as well as hold all the information required for a

isAttacher terminal. This information includes the person’s id and the id of the device it is

attached to. Refer to the class diagram F.1 on Appendix F.

 50

Capability_Terminal: Holds the information of each Capability terminal that is created in

the model. Required by GMF to create a shape for this class. The purpose of this class is to

generate a Capability shape in GMF as well as hold all the information required for a

Capability terminal. This information includes the type of capability. Refer to the class

diagram F.1 on Appendix F.

Execution Subsystem: The execution subsystem includes all the classes that will be created

for the handling of the execution of a model.

FileHandler: This class contains all the functionality for loading files. This contains the code

for calling the file system’s file open mechanisms. This class purpose is to implement the

instruction required for accessing the file system in the given operating system. The operation

loadXMLFile(), calls the operating system’s file handler and loads a file of the format .xml.

Refer to the class diagram F.4 on Appendix F and Appendix G for class interface.

StreamHandler: This class contains all the functionality for handling the transfer of data

among the parsers. This is the class that manages which parser gets to parse the data and

when to parse it. The operation transformToXCML() calls convertToXCML() operation from

GMLToCMLTransformer to transform the file into an XCML compliant file. It then calls

validateSchema() which then calls validateSchema() from the SchemaTransformer to convert

the schema into an instance if is not already so. Finally it calls convertToSkype() which calls

the operation convertToSkypeCalls() to perform Skype API calls. Refer to the class diagram

F.4 on Appendix F and Appendix G for class interface.

MasterParser: This class is just the parent class for all the parsers. It contains functionality

that is the same for all the other parsers. Refer to the class diagram F.4 on Appendix F and

Appendix G for class interface.

GMLToCMLTransformer: This class handles the transformation from a GML XML file to

a XCML file. It checks for the validity of the GXML and parses it to XCML. The purpose of

this class is to validate a the input file and convert it to the form of XCML. The operation

convertToXCML() converts the file an XML file to XCML and returns the new data file to

FileHandler. Refer to the class diagram F.4 on Appendix F and Appendix G for class

interface.

 51

SchemaTransformer: This class handles the transformation from a schema into an instance.

It also contains the functionality for prompting for the required input from the user. The

purpose of this class is to handle the transformation from a schema into an instance that is

ready for execution. The operation validateSchema() takes in an XCML data file and checks

if is missing the values for some of the data, if so it calls displayReuestForm() to request this

information from the user. Refer to the class diagram F.4 on Appendix F and Appendix G for

class interface.

SynthesisEngine: This class handles the creation of Operation (Commands) and binds them

to SkypePtHandler. The purpose of this class is encapsulate the operations to be performed by

Skype. The operation convertToSkypeCalls() takes in an instance data and creates Operations

depending on required instruction. This is then given to SkypePtHandler by calling

addSkypeOperation(). Refer to the class diagram F.5 on Appendix F and Appendix G for

class interface.

SkypePtHandler: This class contains the all the Operations that have been bind for

execution. This class is the client that receives all of the Operations to be executed. It will

contain an Action() operation for every command that will be executed from Skype. Refer to

the class diagram F.5 on Appendix F and Appendix G for class interface.

ConcreteOperation: This class encapsulates a Skype API call for later execution or undoing.

This is the parent class of all the operation classes that will be created for the execution of

Skype. Refer to the class diagram F.5 on Appendix F and Appendix G for class interface.

Operation: This is the interface to be implemented by ConcreteOperation. Refer to the class

diagram F.5 on Appendix F and Appendix G for class interface.

SkypeOperationInvoker: This class actually executes or undoes Operations. This class the

invoker of the Operation(Command) that will be executed from Skype. This is the class that

will ultimately signal for the execution or undoing of the Operations. Refer to the class

diagram F.5 on Appendix F and Appendix G for class interface.

 52

RP_AccessInterface: This is the Repository subsystem interface for the implementation of

the façade pattern. This interface improves the communication between subsystems. Refer to

the class diagram F.6 on Appendix F and Appendix G for class interface.

InformationRepository: This class handles all the information regarding the rules for the

communications language. This class also deals with the format of the schema to be parsed

and the constraints of the language. Refer to the class diagram F.6 on Appendix F and

Appendix G for class interface.

5.4 Validation of the Detailed Design Model

5.4.1 Check List

Design Architectural Model Inspection Yes No
Completeness: A sufficient set of interfaces is defined to provide all of the
services needed for the application’s functionality. The relationship between
the interfaces allows for the flow of control and data and data necessary to
realize all of the uses described in the use case diagram.

X

Correctness: The architectures satisfy its constraints; use of appropriate
architectural patterns; represents the interactions between the interfaces.

X

Consistency: Each use of the system can be handled only by one set of
interfaces.

X

Syntax Checks for Classes Yes No
Check that multiplicity on an association is correctly represented on the
class diagram.

X

Ensure that stereotypes are represented by << >> on classes, attributes,
operations and relationships on a class diagram.

X

Check association of classes with language libraries. X
Check to see if a class is an exception class. X
Check how error handling is modeled and implemented in a class. X

Semantic Checks for Classes Yes No
Check direction for association. X
Check the meaning of the relationships on a class diagram. X
Check for collection of classes. X
Check the business rules behind the multiplicity. X
Check for association classes. X
Check if the operations of a class that has been specialized are overloaded. X
Check for encapsulation. X
Ensure that language constructs subject to interpretations are checked for
their implied meaning.

X

 53

Aesthetic Checks for Classes Yes No
Check number of attributes. X
Check the number of operations. X
Check the load on operations. X
Check the load on the class. X

Aesthetic Checks for Class Diagrams Yes No
Ensure that technical classes are represented only by their names rather than
by their entire qualification.

X

Improve the aesthetics by letting the entity classes appear in more than one
diagram.

 X

Improve the aesthetics by redistributing the classes and their associations
across more than one class diagram.

X

Ensure that sufficient explanatory note are provided. X
Check how error handling is modeled and implemented in a class. X

Syntax Check for State Chart Diagram Yes No
Check transitions. X
Check events. X
Check guard conditions. X
Check entry condition. X
Check exit condition. X
Check activity states. X
Check action states X

Semantic Check for State Chart Diagram Yes No
Check messages going out to other objects. X
Check messages being received by other objects. X
Check nested states. X
Check historical states. X
Check parallel states. X
Check to see that state chart diagrams map with objects shown for a class
within a class diagram.

X

Aesthetic Check for State Chart Diagram Yes No
Ensure the number of states on a diagram and their complexity is
understandable.

X

5.4.2 Structure Walkthrough

Class Diagram Yes No
Every class maps to an object in the sequence diagram. X
Operations map to transition in the sequence diagram. X

 54

Class diagram represents the structure on the subsystems. X
Enough interfaces to facilitate communication between subsystems. X
Every class has a stereotype that maps to the profile. X

Test Case – Detailed Class Diagram Comments PASS FAIL
TC-1.1_CrtUsrNTerm X
TC-1.2_CrtCnctnNTerm X
TC-1.3_CrtLclNTerm X
TC-1.4_CrtLclNTerm X
TC-1.6_CrtDvcNTerm X
TC-1.8_CrtTerm X
TC-1.9_SaveMdl X
TC-1.10_LoadMdl X
TC-2.1_SchTransf X
TC-2.2_ExecuteModel X
TC-1.11_CrtVoiceClCommMdl X
TC-1.12_CrtChatCommMdl X
TC-1.13_CommMdlConstcy X

Test Case – State Chart Diagram Comments PASS FAIL
TC-1.1_CrtUsrNTerm X
TC-1.2_CrtCnctnNTerm X
TC-1.3_CrtLclNTerm X
TC-1.4_CrtLclNTerm X
TC-1.6_CrtDvcNTerm X
TC-1.8_CrtTerm X
TC-1.9_SaveMdl X
TC-1.10_LoadMdl X
TC-2.1_SchTransf X
TC-2.2_ExecuteModel X
TC-1.11_CrtVoiceClCommMdl X
TC-1.12_CrtChatCommMdl X
TC-1.13_CommMdlConstcy X

 55

6. Implementation

This chapter introduces all the information related to the implementation of the

RRCommSSys. This chapter describes the major Platform Specific Models. This models are

the Eclipse Modeling Framework (EMF), the Eclipse Graphical Editing Framework (GEF),

the Eclipse Graphical Modeling Framework (GMF), and the Skype platform. This chapter

also describes the validation of the subsystems.

6.1 Description of the platform specific model used.

Eclipse Graphical Modeling Framework (GMF) provides a generative component

and runtime infrastructure for developing graphical editors based on EMF and GEF.

The project aims to provide these components, in addition to exemplary tools for

select domain models which illustrate its capabilities. [4]

Graphical Editing Framework (GEF) allows developers to create a rich graphical

editor from an existing application model. GEF consists of 2 plug-ins. The

org.eclipse.draw2d plug-in provides a layout and rendering toolkit for displaying

graphics. The developer can then take advantage of the many common operations

provided in GEF and/or extend them for the specific domain. GEF employs an MVC

(model-view-controller) architecture which enables simple changes to be applied to

the model from the view. [4]

Eclipse Modeling Framework (EMF) project is a modeling framework and code

generation facility for building tools and other applications based on a structured data

model. From a model specification described in XMI, EMF provides tools and

runtime support to produce a set of Java classes for the model, along with a set of

adapter classes that enable viewing and command-based editing of the model, and a

basic editor. [4]

Skype is a peer-to-peer Internet telephony network Skype has experienced rapid

growth in both popular usage and software development since launch, both of its free

and its paid services. The Skype communications system is notable for its broad range

 56

of features, including free voice and video conferencing, its ability to use peer to peer

(decentralized) technology to overcome common firewall and NAT (Network address

translation) problems, and its extreme countermeasures against reverse engineering of

the software or protocol. [3]

6.2 Validation of System

6.2.1 Check List

Syntax Checks for Classes (Advanced) Yes No
Check class names. X
Check stereotypes. X
Check the type of the class itself. X
Check attributes. It is important to subject the attributes to syntax checks
that are language specific.

X

Check attribute types. X
Check attribute initial values. Ensure that the type of value initialization and
the attribute types are compatible.

X

Check attribute visibility. X
Check attribute stereotypes. X
Check operations to ensure their format complies with the language of
implementation.

X

Check operation signatures. X
Check operation visibility. X
Check operation stereotypes. X

Semantic Checks for Classes Yes No
Check meaning of the class. X
Check meaning of the attributes. X
Check attribute initial values. X
Check What does an operation mean? Ensure that the meaning of the
operation is reflected in its name and format.

X

Check the pre- and post-conditions of operations. X
Check signature of operations. X
Check stereotypes of operations. X
Check scope of operations. X
Check to see if the operations of a class are overloaded. X
If overriding operations exist, ensure their correctness. X
Check for overriding variables. X
Check for encapsulation. X

 57

6.2.2 Implementation Test

Identifier: TC-1.1_CrtUsrNTerm

Expected results: The Connection is drawn onto the canvas.

Actual results: The Connection is drawn onto the canvas.

Pass/Fail: PASS

Identifier: TC-1.2_CrtCnctnNTerm

Expected results: The Connection terminal is drawn on the canvas. The connections are

drawn between the Connection terminal and the MediaAttached terminal.

Actual results: The Connection terminal is drawn on the canvas. The connections are
drawn between the Connection terminal and the MediaAttached terminal.

Pass/Fail: PASS

Identifier: TC-1.3_CrtLclNTerm

Expected results: The Person terminal is drawn on the canvas. The isAttached terminal is

drawn on the canvas. The connections are drawn between the Person
terminal and the isAttached terminal.

Actual results: The Person terminal is drawn on the canvas. The isAttached terminal is
drawn on the canvas. The connections are drawn between the Person
terminal and the isAttached terminal.

Pass/Fail: PASS

Identifier: TC-1.4_CrtLclNTerm

Expected results: The Person terminal is drawn on the canvas. The isAttached terminal is

drawn on the canvas. The connections are drawn between the Person
terminal and the isAttached terminal.

Actual results: The Person terminal is drawn on the canvas. The isAttached terminal is
drawn on the canvas. The connections are drawn between the Person
terminal and the isAttached terminal.

Pass/Fail: PASS

Identifier: TC-1.5_CrtMdaAtchNTerm

Expected results: The Medium shape is drawn on the canvas, as well as the connection to the

Form non-terminal.

 58

Actual results: The Medium shape is drawn on the canvas, as well as the connection to the

Form non-terminal.

Pass/Fail: PASS

Identifier: TC-1.6_CrtDvcNTerm

Expected results: The Capability shape and the Device shape are drawn on the canvas, as well

as the connection from Device to Capability.

Actual results: The Capability shape and the Device shape are drawn on the canvas, as well
as the connection from Device to Capability.

Pass/Fail: PASS

Identifier: TC-1.8_CrtTerm

Expected results: The Terminal shape is drawn on the canvas.

Actual results: The Terminal shape is drawn on the canvas.

Pass/Fail: PASS

Identifier: TC-1.9_SaveMdl

Expected results: The file is saved.

Actual results: The file is saved.

Pass/Fail: PASS

Identifier: TC-1.10_LoadMdl

Expected results: The file is loaded.

Actual results: The file is loaded.

Pass/Fail: PASS

Identifier: TC-2.1_SchTransf

Expected results: The schema is transformed into am instance.

Actual results: The schema is transformed into am instance.

Pass/Fail: PASS

 59

Identifier: TC-2.2_ExecuteModel

Expected results: The instance is executed and Skype calls are made.

Actual results: The instance is executed and Skype calls are made.

Pass/Fail: PASS

Identifier: TC-1.11_CrtVoiceClCommMdl

Expected results: All the terminals and connections are drawn on the canvas.

Actual results: All the terminals and connections are drawn on the canvas.

Pass/Fail: PASS

Identifier: TC-1.12_CrtChatCommMdl

Expected results: All the terminals and connections are drawn on the canvas.

Actual results: All the terminals and connections are drawn on the canvas.

Pass/Fail: PASS

 60

7. Glossary

Class Diagram – A model representing the different classes within a s/w system and how

they interact with each other.

Component – A physical and replaceable part of a system that conforms to and provides the

realization of a set of interfaces.

Model - an abstract representation of a system that enables us to answer questions about the

system.

Postcondition – A predicate that must be true after an operation is invoked.

Precondition – A predicate that must be true before an operation is invoked.

Sequence Diagram – A model representing the different objects and/or subsystems of a

software project and how they relate to each other during different operations for a given use

case.

Unified Modeling Language (UML) – A standard set of notations for representing models.

Use Case – A general sequence of events that defines all possible actions between one or

many actors and the system for a given piece of functionality.

RRCommSSys – Name of this system – Rapid Realization of communication Services

System.

VE/VDE - Visual Environment/Visual Development Environment. Interface where the user

can develop communication models by selecting terminals from a toolbox and dragging them

onto the canvas.

GEF - Graphical Editing Framework. The Graphical Editing Framework is an open

source framework dedicated to providing a rich, consistent graphical editing

environment for

applications on the Eclipse Platform.

GMF - Graphical Modeling Framework. Creates a modeling framework which we used to

create the VE.

CVM - Communication Virtual Machine. Communication Virtual machine.

CML - Communication Modeling Language. Language establishing the constraints for

communication models.

EMF – Eclipse Modeling Framework. Used with GMF and GEF to build out VE.

 61

8. Appendix

8.1 Appendix A – Use Case Diagrams

Execute Subsytem

Com. Mdl. Cons.

Modeling Subsystem

Ask for input

Remote User

Send a chat Message
Make a voice Call

Execute

Local User

Create Form NonTerminal

Create Local NonTerminal

Create Connection NonTerminal

Create User Schema NonTerminal

Create Device NonTerminal

Create Media Attached NonTerminal

Create Terminal

Load Model

Save Model
Translate Model

Create Remote NonTerminal

CM Developer

<<extend>>

<<extend>>

<<include>>

<<extend>>

<<extend>>

<<extend>>

<<include>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<include>>

<<include>>

Fig A.1 Use Case Diagram for RRComSys.

 62

8.2 Appendix B – Use Cases

Use Case – Create User Schema Non-Terminal

*Use Case ID: 1.1_CrtUsrNTerm
Use Case Level: High-level.
*Scenario: User creates a User Schema non-terminal from existing terminals and
nonterminals

• Actor: Devoloper for Modeling environment.
Pre-conditions: Modeling environment has to be loaded. Terminals and
nonTerminals for a Local non-terminal(see use case 1.3_CrtLclNTerm) and
Connections Non-terminals (see use case 1.2_CrtCnctnNTerm) must be on the
canvas.

• Description:
1. Trigger: The user drags the connection to Local connection, connecting

the local and connection non terminals.
2. The system responds by drawing the line between the two non-terminals

• Post-conditions: The Model in the modeling canvas now contains a User Schema
Non-Terminal

*Alternative Courses of Action: User can connect more more than one connection to
the local non terminal. The system shall draw the lines accordingly.
Extensions: N/A
*Exceptions: The user might try to connect the wrong association to the non-terminals.
In this case, the system will not draw the line, as the validity of the model is checked at
run-time.
The user might try to connect the right association but to the wrong type of terminals.
The system will not draw the line for the same reason.
Concurrent Uses: N/A
*Related Use Cases: 1.3_CrtLclNTerm, 1.2_CrtCnctnNTerm
--

Decision Support
*Frequency: Average 3 per model, 20 per day.
*Criticality: Intermediate
*Risk: Medium.

*Constraints:

 63

• Usability: must be easy to use, can be mastered in less than 5 minutes.
• Reliability: must always draw the selected terminal or connection.
• Performance: must take no longer than 2 seconds to draw the terminal shape or

connection selected.
• Supportability: - No debug necessary.
• Implementation: must be implemented with Eclipse GMF.

--

Modification History --
*Owner: Alejandro Ortiz
*Initiation date: 02/05/07
*Date last modified: 02/05/07

Use Case – Create Connection Non-Terminal

*Use Case ID: 1.2_CrtCnctnNTerm
Use Case Level: High-level.
*Scenario: User creates a Connection non-terminal from existing terminals and
nonterminals

• Actor: Devoloper for Modeling environment.
Pre-conditions: Modeling environment has to be loaded. NonTerminals for a
Media Attached non-terminal(see use case 1.5_CrtMdiaAttchNTerm), and one or
more Remote Non-terminals (see use case 1.4_CrtRmtNTerm) and must be on the
canvas.

• Description:
1. Trigger: User drags a Connections terminal onto the canvas. (see use case

1.8_CrtTerm). System responds as that usecase indicates.
2. Trigger: The user drags the Connection to media Attached connection, connecting

the Media Attached non-terminal and connection terminal.
3. The system responds by drawing the line between the non-terminal and the

terminal shape.
4. Trigger: User then drags the connection to Remote connection, connecting

connection terminal and remote non-terminal.

 64

5. The system responds by drawing the line between the non-terminal and the
terminal shape.

• Post-conditions: The Model in the modeling canvas now contains a connection
Non-Terminal

*Alternative Courses of Action: User can connect more than one remotes to the
connection terminal. The system shall draw the lines accordingly.
Extensions: N/A
*Exceptions: The user might try to connect the wrong association to the non-terminals.
In this case, the system will not draw the line, as the validity of the model is checked at
run-time.
The user might try to connect the right association but to the wrong type of terminals.
The system will not draw the line for the same reason.
Concurrent Uses: 1.8_CrtTerm
*Related Use Cases: 1.5_ CrtMdiaAttchNTerm, 1.4_ CrtRmtNTerm
--

Decision Support
*Frequency: Average 3 per model, 20 per day.
*Criticality: Intermediate
*Risk: Medium.

*Constraints:
• Usability: must be easy to use
• Reliability: must always draw the selected terminal or connection.
• Performance: must take no longer than 2 seconds to draw the terminal shape or

connection selected.
• Supportability: - No debug necessary.
• Implementation: must be implemented with Eclipse GMF.

--

Modification History --
*Owner: Alejandro Ortiz
*Initiation date: 02/05/07
*Date last modified: 02/05/07

 65

Use Case – Create Local Non-Terminal

*Use Case ID: 1.3_CrtLclNTerm
Use Case Level: High-level.
Scenario: User creates a Local non-terminal from existing terminals and nonterminals

• Actor: Devoloper for Modeling environment.
• Pre-conditions: Modeling environment has to be loaded. nonTerminals for a device

non-terminal(see use case 1.6_CrtDvcNTerm), must be on the canvas.

• Description:
1. Trigger: User drags a person terminal onto the canvas. (see use case

1.8_CrtTerm). System responds as that usecase indicates.
2. Trigger: User drags a isAttached terminal onto the canvas. (see use case

1.8_CrtTerm). System responds as that usecase indicates.
3. Trigger: The User drags the person to is attached connection, connecting the

person and is attached terminals.
4. The system responds by drawing the line between the two terminals.
5. Trigger: the user then drags an is attached to device connection, connecting the is

attached terminal and the device nonterminal.
6. The system responds by drawing the line between the terminal and non-terminal.
• Post-conditions: The Model in the modeling canvas now contains a User Schema

Non-Terminal
*Alternative Courses of Action: N/A
Extensions: N/A
*Exceptions: The user might try to connect the wrong association to the non-terminals.
In this case, the system will not draw the line, as the validity of the model is checked at
run-time.
The user might try to connect the right association but to the wrong type of terminals.
The system will not draw the line for the same reason.
Concurrent Uses: 1.8_CrtTerm
*Related Use Cases: 1.6_ CrtDvcNTerm
--

Decision Support
*Frequency: Average 3 per model, 20 per day.
*Criticality: Intermediate

 66

*Risk: Medium.

*Constraints:
• Usability: must be easy to use, can be mastered in less than 5 minutes.
• Reliability: must always draw the selected terminal or connection.
• Performance: must take no longer than 2 seconds to draw the terminal shape or

connection selected.
• Supportability: - No debug necessary.
• Implementation: must be implemented with Eclipse GMF.

--

Modification History --
*Owner: Alejandro Ortiz
*Initiation date: 02/05/07
*Date last modified: 02/05/07

Use Case – Create Remote Non-Terminal

*Use Case ID: 1.4_CrtRmtNTerm
Use Case Level: High-level.
* Scenario: User creates a Remote non-terminal from existing terminals and
nonterminals

• Actor: Devoloper for Modeling environment.
• Pre-conditions: Modeling environment has to be loaded. Terminals and

nonTerminals for a device non-terminal(see use case 1.6_CrtDvcNTerm), a
person terminal, and an isAttached terminal (see use case 1.8_CrtTerm) must be
on the canvas.

• Description:
1. Trigger: User drags a person terminal onto the canvas. (see use case

1.8_CrtTerm). System responds as that usecase indicates.
2. Trigger: User drags a isAttached terminal onto the canvas. (see use case

1.8_CrtTerm). System responds as that usecase indicates.
3. Trigger: The User drags the person to is attached connection, connecting

the person and is attached terminals.
4. The system responds by drawing the line between the two terminals.

 67

5. Trigger: the user then drags an is attached to device connection,
connecting the is attached terminal and the device nonterminal.

6. The system responds by drawing the line between the terminal and non-
terminal.

• Post-conditions: The Model in the modeling canvas now contains a Remote Non-
Terminal

*Alternative Courses of Action: N/A
Extensions: N/A
*Exceptions: The user might try to connect the wrong association to the non-terminals.
In this case, the system will not draw the line, as the validity of the model is checked at
run-time.
The user might try to connect the right association but to the wrong type of terminals.
The system will not draw the line for the same reason.
Concurrent Uses: 1.8_CrtTerm
*Related Use Cases: 1.6_ CrtDvcNTerm
--

Decision Support
*Frequency: Average 3 per model, 20 per day.
*Criticality: Intermediate
*Risk: Medium.

*Constraints:
• Usability: must be easy to use, can be mastered in less than 5 minutes.
• Reliability: must always draw the selected terminal or connection.

• Performance: must take no longer than 2 seconds to draw the terminal shape or
connection selected.

• Supportability: - No debug necessary.
• Implementation: must be implemented with Eclipse GMF.

--

Modification History --
*Owner: Alejandro Ortiz
*Initiation date: 02/05/07
*Date last modified: 02/05/07

 68

Use Case – Create MediaAttached Non-Terminal

*Use Case ID: 1.5_CrtMdaAtchNTerm
Use Case Level: High-level.
* Scenario: User creates a Remote non-terminal from existing terminals and
nonterminals

• Actor: Devoloper for Modeling environment.
• Pre-conditions: Modeling environment has to be loaded. nonTerminals for one or

more form non-terminal (see use case 1.7_CrtFormNTerm) must be on the
canvas.

• Description:
1. Trigger: User drags a Medium terminal onto the canvas. (see use case

1.8_CrtTerm). System responds as that usecase indicates.
2. Trigger: The user drags the form to medium connection, connecting the

Medium terminal and form non terminals.
3. The system responds by drawing the line between the two non-terminals

• Post-conditions: The Model in the modeling canvas now contains a MediaAttached
Non-Terminal

*Alternative Courses of Action: User can connect more than one form to the Medium
terminal. The system shall draw the lines accordingly. Similarly, the user can connect
more than one Medium to the form non-terminal. The system shall draw the lines
accordingly.
Extensions: N/A
*Exceptions: The user might try to connect the wrong association to the non-terminals.
In this case, the system will not draw the line, as the validity of the model is checked at
run-time.
The user might try to connect the right association but to the wrong type of terminals.
The system will not draw the line for the same reason.
Concurrent Uses: 1.8_CrtTerm
*Related Use Cases: 1.7_CrtFormNTerm
--

Decision Support
*Frequency: Average 3 per model, 20 per day.
*Criticality: Intermediate
*Risk: Medium.

 69

*Constraints:
• Usability: must be easy to use, can be mastered in less than 5 minutes.
• Reliability: must always draw the selected terminal or connection.
• Performance: must take no longer than 2 seconds to draw the terminal shape or

connection selected.
• Supportability: - No debug necessary.
• Implementation: must be implemented with Eclipse GMF.

--

Modification History --
*Owner: Alejandro Ortiz
*Initiation date: 02/05/07
*Date last modified: 02/05/07

Use Case – Create Device Non-Terminal

*Use Case ID: 1.6 CrtDvcNTerm
Use Case Level: High-level.
* Scenario: User creates a Device non-terminal from existing terminals and nonterminals

• Actor: Devoloper for Modeling environment.
• Pre-conditions: Modeling environment has to be loaded.

• Description:
1. Trigger: User drags a Capability terminal onto the canvas. (see use case

1.8_CrtTerm). System responds as that usecase indicates.
2. Trigger: User drags a Device terminal onto the canvas. (see use case

1.8_CrtTerm). System responds as that usecase indicates.
3. Trigger: The user drags the Device to Capability connection, connecting

the Capability and Device terminals.
4. The system responds by drawing the line between the two non-terminals

• Post-conditions: The Model in the modeling canvas now contains a Device Non-
Terminal

 70

*Alternative Courses of Action: User can connect more than one Capability to the
Device terminal. The system shall draw the lines accordingly.
Extensions: N/A
*Exceptions: The user might try to connect the wrong association to the non-terminals.
In this case, the system will not draw the line, as the validity of the model is checked at
run-time.
The user might try to connect the right association but to the wrong type of terminals.
The system will not draw the line for the same reason.
Concurrent Uses: 1.8_CrtTerm
*Related Use Cases: N/A
--

Decision Support
*Frequency: Average 3 per model, 20 per day.
*Criticality: Intermediate
*Risk: Medium.

*Constraints:
• Usability: must be easy to use, can be mastered in less than 5 minutes.
• Reliability: must always draw the selected terminal or connection.
• Performance: must take no longer than 2 seconds to draw the terminal shape or

connection selected.
• Supportability: - No debug necessary.
• Implementation: must be implemented with Eclipse GMF.

--

Modification History --
*Owner: Alejandro Ortiz
*Initiation date: 02/05/07
*Date last modified: 02/05/07

 71

Use Case – Create Form Non-Terminal

*Use Case ID: 1.7_CrtFormNTerm
Use Case Level: High-level.
* Scenario: User creates a Form non-terminal from existing terminals and nonterminals

• Actor: Devoloper for Modeling environment.
• Pre-conditions: Modeling environment has to be loaded.

• Description:
1. Trigger: User drags a Form terminal onto the canvas. (see use case

1.8_CrtTerm). System responds as that usecase indicates.
• Post-conditions: The Model in the modeling canvas now contains a User Schema

Non-Terminal
*Alternative Courses of Action: User can create a Form non-terminal also by placing
one or more existing forms terminals, and one or more existing Medium terminals, into
another Form terminal. The result will be a Form non-terminal containing one or more
forms and/or one or more mediums.
Extensions: N/A
*Exceptions: The user might try to connect the wrong association to the non-terminals.
In this case, the system will not draw the line, as the validity of the model is checked at
run-time.
The user might try to connect the right association but to the wrong type of terminals.
The system will not draw the line for the same reason.
Concurrent Uses: 1.8_CrtTerm
*Related Use Cases: N/A
--

Decision Support
*Frequency: Average 3 per model, 20 per day.
*Criticality: Intermediate
*Risk: Medium.

*Constraints:
• Usability: must be easy to use, can be mastered in less than 5 minutes.
• Reliability: must always draw the selected terminal or connection.
• Performance: must take no longer than 2 seconds to draw the terminal shape or

connection selected.

 72

• Supportability: - No debug necessary.
• Implementation: must be implemented with Eclipse GMF.

--

Modification History --
*Owner: Alejandro Ortiz
*Initiation date: 02/05/07
*Date last modified: 02/05/07

Use Case – Create Terminal

*Use Case ID: 1.8_CrtTerm
Use Case Level: High-level.
*Scenario: The CVM developer puts a terminal shape on the canvas.

• Actor: CVM Developer.
• Pre-conditions: A CVM model canvas must exist in the Eclipse IDE.
• Description:

1. The CVM developer clicks the shape on the shape palette that he or she wants
to include in the CVM model.

2. The system highlights the shape on the palette.
3. While holding the mouse button pressed, the CVM developer drags the shape

onto the canvas and releases the mouse button.
4. The system draws the selected shape on the canvas and assigns default values

for its attributes.

• Relevant requirements: None.
• Post-conditions: The terminal shape (Connection, IsAttachedTo, Device, Person,

Medium, Form, Capability) chose by the CVM developer is drawn on the canvas.
*Alternative Courses of Action: None
Extensions: None
*Exceptions: If the terminal shape is dropped on a place beyond the canvas boundaries,
the system will not draw the shape and the mouse cursor will go back to normal.
Concurrent Uses: None
*Related Use Cases: This use case is extended by the family of use cases related to
building non-terminal constructs of the CVM modeling language.

 73

--

Decision Support
*Frequency: Typically, this is use case is executed every time the CVM developer wants
to add non-terminal productions of the CVM language to his or her model. Non-terminals
are made up of terminal shapes and relationships among, which generally results in a
composite production.
*Criticality: This is elementary piece of funcionality in order for the non-terminals to be
composed in any model.
*Risk: Without this function, the CVM developer will not be able to construct any model.

*Constraints:
• Usability: must be easy to use, can be mastered in less than 5 minutes.
• Reliability: must always draw the selected terminal.
• Performance: must take no longer than 1 second to draw the terminal shape.
• Supportability: - No debug necessary.
• Implementation: must be implemented with Eclipse GMF.

--

Modification History
*Owner: Ariel Cary
*Initiation date: 02/11/2007
*Date last modified: 02/12/2007
Version: 1.0

Use Case – Save Model

*Use Case ID: 1.9_SaveMdl.
Use Case Level: High-level.
*Scenario: The CVM developer saves the modifications done on the current CVM Model.

• Actor: CVM Developer.

• Pre-conditions:
o A model canvas must exist containing at least one terminal shape.

• Description:
1. The CVM developer selects the Save option from the File Menu of the Eclipse

IDE.

 74

2. The system asks the CVM developer for a file name in case this model was
not saved before. Otherwise, go to step 4.

3. The CVM developer enters a file name for the CVM model.
4. The system makes the model changes persistent with the file name provided in

step 3 or existing file identified in step 2. The file is saved in any directory of
the file system chosen by the CVM developer.

5. The system acknowledges the operation by displaying a message on the status
bar of the IDE.

• Relevant requirements: None.
• Post-conditions: The CVM model is saved on disk.

*Alternative Courses of Action: None
1. If in step 2, the CVM developer hits the Cancel button, the system cancels the

action and closes the save dialog window.
Extensions: None
*Exceptions:

• In step 3, if the file name provided by the CVM developer already exists in
location specified by the CVM developer, then the system displays an error
message accordingly and goes to step 2 to ask for another file name.

• In step 4, if there is not enough space on the file system, the system displays an
error dialog message stating so.

Concurrent Uses: None
*Related Use Cases: None
--

Decision Support
*Frequency: Typically, the CVM developer will save the current model every time a
relevant change to it is made.
*Criticality: This is a critical funcionality as it implements the persistency of the model
so as to prevent the lost of work done on the model in case of, for exampler, a power
outage or operating system error.
*Risk: Fairlure to execute this function may result in lost of CVM model data.

*Constraints:
• Usability: must be easy to use, can be mastered in less than 5 minutes.
• Reliability: must always save the CVM model on disk unless external conditions

prevent doing so.
• Performance: is proporcional to the size of the model. It’s expected to perform

within 2 seconds on average.

 75

• Supportability: must clearly identify the subcomponent where an error occurred
in case of exceptions.

• Implementation: must be implemented with Eclipse GMF.
--

Modification History
*Owner: Ariel Cary
*Initiation date: 02/11/2007
*Date last modified: 02/14/2007
Version: 1.0

Use Case – Load Model

*Use Case ID: 1.10_LoadMdl
Use Case Level: High-level.
*Scenario: The CVM developer loads a CVM Model into the canvas.

• Actor: CVM Developer.
• Pre-conditions: None

• Description:
1. The CVM developer selects the Open option from the File Menu of the

Eclipse IDE.
2. The system asks the CVM developer for the file name containing a

CVM model to be loaded into a canvas.
3. The CVM developer enters the requested file name.
4. The system opens the file specified in step 3 and loads the CVM model

into the IDE canvas.
5. The system acknowledges the operation by displaying a message on the

status bar of the IDE.

• Relevant requirements: None.
• Post-conditions: The CVM model is loaded into the canvas.

*Alternative Courses of Action:
2. If in step 2, the CVM developer hits the Cancel button, the system cancels the

action and closes the Load dialog window.
Extensions: None
*Exceptions:

 76

• In step 3, if the file name specified by the CVM developer does not exist, then
the system displays an error message accordingly and goes to step 2 to ask for
another file name.

• In step 4, if there is not enough space on the file system, the system displays an
error dialog message stating so.

• In step 4, if the specified file does not contain a valid model or if the file cannot
be read, the system displays an error dialog message stating so.

Concurrent Uses: None
*Related Use Cases: None
--

Decision Support
*Frequency: None.
*Criticality: This funcionality provides a way to re-load stored CVM models for the
purpose of visualizing, modifying, etc. them.
*Risk: Fairlure to execute this function will prevent CVM developers from visualizing
saved models.

*Constraints:
• Usability: must be easy to use, can be mastered in less than 5 minutes.
• Reliability: must always load the CVM model from disk unless external conditions

prevent doing so.
• Performance: is proporcional to the size of the model. It’s expected to perform

within 2 seconds on average.
• Supportability: must clearly identify the subcomponent where an error occurred

in case of exceptions.
• Implementation: must be implemented with Eclipse GMF.

--

Modification History
*Owner: Ariel Cary
*Initiation date: 02/11/2007
*Date last modified: 02/15/2007
Version: 1.0

 77

Use Case – Schema Transformation

*Use Case ID: 2.1_SchTransf
Use Case Level: System Level
*Scenario User John Doe wants to convert a schema of a model into an instance ready
for execution. The user loads the schema into the Schema Transformation Environment
(STE). He then fills in the values requested from the STE and clicks finish, and a
complete instance of the schema is created and saved.

• Actor: John Doe
• Pre-conditions: The input must be an incomplete schema.

• Description:

1. Trigger: The user initiates an action by selecting the schema file.
2. The system responds by parsing the file and asking for missing fields

• Relevant requirements: None
• Post-conditions: A complete X-CML instance is created.

*Alternative Courses of Action None
Extensions: None
*Exceptions: None
Concurrent Uses: None
*Related Use Cases: 2.2_ExecuteModel
--

Decision Support
*Frequency: Eveytime a schema is loaded for execution.
*Criticality: Critical, without it no shcemas will be allowed for execution. Only complete
istances will be allowed.
*Risk: User inputs wrong values, or malicious values.

*Constraints:
A schema is but an incomplete instance. It is an instance where at least one required field
has been left empty.

• Usability: must be easy to use, can be mastered in less than 5 minutes.
• Reliability: must always load the shcema from disk unless external conditions

prevent doing so.

 78

• Performance: is proporcional to the size of the schema. It’s expected to perform
within 2 seconds on average.

• Supportability: must clearly identify the subcomponent where an error occurred
in case of exceptions.

• Implementation: must be implemented with Eclipse.

--

Modification History – v1
*Owner: Frank Hernandez
*Initiation date: 02/08/2007
*Date last modified: 02/08/2007

Note the sections with the * must be included in the use case.

Thanks to Dr. John McGregor, Computer Science Department Clemson University.

Use Case – Execute Model

*Use Case ID: 2.2_ExecuteModel
Use Case Level: System Level
*Scenario: User John Doe wants to execute a communication instance. The user then
loads the instance into the Synthesis Engine (SE) and selects execute.

• Actor: John Doe
• Pre-conditions: The input must be an compete instance.
• Description:

1. Trigger: The user initiates an action by selecting the instance file.
The system responds by parsing the file and performing the required
Skype API calls.

• Post-conditions: A communication model is executed.
*Alternative Courses of Action None
Extensions: None
*Exceptions: None

 79

Concurrent Uses: None
*Related Use Cases: 2.1_SchTransf.
--

Decision Support
*Frequency: Eveytime an instance is loaded for execution.
*Criticality: Critical, without it no execution will be allowed.
*Risk: None.

*Constraints:
An instance is a complete schema.

• Usability: must be easy to use, can be mastered in less than 5 minutes.
• Reliability: must always load the instance from disk unless external conditions

prevent doing so.
• Performance: is proporcional to the size of the schema. It’s expected to perform

within 2 seconds on average.
• Supportability: must clearly identify the subcomponent where an error occurred

in case of exceptions.
• Implementation: must be implemented with Eclipse.

--

Modification History – v1
*Owner: Frank Hernandez
*Initiation date: 02/08/2007
*Date last modified: 02/08/2007

Use Case – Create Voice Call Communication Model

*Use Case ID: 1.11_CrtVoiceClCommMdl
Use Case Level: High Level
*Scenario: Actor John Doe wants to create a communication model to chat with Jane
Doe. He then proceeds to select and drop the terminals required for the connection to be
created.

• Actor: John Doe

 80

• Pre-conditions: There must be a new file already opened and ready to be worked
on.

• Description:
 Trigger: The user initiates an action by draging a terminal onto the screen.

The system responds by painting the terminal onto the canvas
1. Actor drags the termial for ‘Person’ onto the canvas and fills in the

required information.
2. Actor drags the termial for ‘isAttahced’ onto the canvas and fills in

the required information, and attaches it to ‘Person’.
3. Actor drags the termial for ‘Device’ onto the canvas and fills in the

required information, and attaches it to ‘isAttached’.
4. Repeats step 1-3 for Jane Doe.
5. Actor drags the termial for ‘Connnection’ onto the canvas and fills

in the required information, and connects it to both ‘Device’
terminals he created previusly .

6. Actor drags the termial for ‘Medium’ onto the canvas and fills in
‘LiveAudio’, and connects to the ‘Connection’ terminal he created.

• Post-conditions: After the use the system will now hold the a communications
model that stablishes a voice call connection between 2 actors.

*Alternative Courses of Action There can be a conference call connection model, this
will be similar to this main use with the exception that rather than having a set of
terminal created for Jane Doe, now we have similar sets of terminal created for each
actor that will be part of the conference.
Extensions: Team1_Conference_ Call.
*Exceptions: No errors araise from this use case.
Concurrent Uses: 1.11_CrtChatCommMdl
*Related Use Cases: N/A
--

Decision Support
*Frequency: This use will be persormed at least once per application use. That is
everytime that that any actor want to create a communications model to connect to
another actor.
*Criticality: This use is required for anytime the user will want to create a voice call
model to communicate to another actor.
*Risk: The is little or no risk involded in this use.

*Constraints:

 81

Each person terminal must an can only connect to (1) isAttached terminal. Each
isAttached terminal can only be connected to (1) device terminal. Each device terminal
must have at least (1) capability terminal connected to it, and can only connect to (1)
connection terminal.

• Usability: must be easy to use, can be mastered in less than 5 minutes.
• Reliability: must always draw the selected terminal or connection.
• Performance: must take no longer than 2 seconds to draw the terminal shape or

connection selected.
• Supportability: - No debug nescesary, simple.
• Implementation: must be implemented with Eclipse GMF.

--

Modification History – v1
*Owner: Frank Hernandez
*Initiation date: 02/08/2007
*Date last modified: 02/08/2007

Use Case – Create Chat Message Model

*Use Case ID: 1.12_CrtChatCommMdl
Use Case Level: High Level
*Scenario: Actor John Doe wants to create a communication model to chat with Jane
Doe. He then proceeds to select and drop the terminals required for the connection to be
created.

• Actor: John Doe
• Pre-conditions: There must be a new file already opened and ready to be worked

on.
• Description:

Trigger: The user initiates an action by draging a terminal onto the screen.
The system responds by painting the terminal onto the canvas

1. Actor drags the termial for ‘Person’ onto the canvas and fills in the
required information.

2. Actor drags the termial for ‘isAttahced’ onto the canvas and fills in
the required information, and attaches it to ‘Person’.

3. Actor drags the termial for ‘Device’ onto the canvas and fills in the
required information, and attaches it to ‘isAttached’.

4. Repeats step 1-3 for Jane Doe.

 82

5. Actor drags the termial for ‘Connnection’ onto the canvas and fills
in the required information, and connects it to both ‘Device’
terminals he created previusly .

6. Actor drags the termial for ‘Medium’ onto the canvas and fills in
‘TextFile’, and connects to the ‘Connection’ terminal he created.

• Relevant requirements: None
• Post-conditions: After the use the system will now hold the a communications

model that stablishes a voice call connection between 2 actors.
*Alternative Courses of Action There can be a conference chat connection model, this
will be similar to this main use with the exception that rather than having a set of
terminal created for Jane Doe, now we have similar sets of terminal created for each
actor that will be part of the conference.
Extensions: Team1_Conference_ Chat.
*Exceptions: No errors araise from this use case.
Concurrent Uses: Team1_Voice_Call
*Related Use Cases: N/A
--

Decision Support
*Frequency: This use will be persormed at least once per application use. That is
everytime that that any actor want to create a communications model to connect to
another actor.
*Criticality: This use is required for anytime the user will want to create a chat model to
communicate to another actor.
*Risk: The is little or no risk involded in this use.

*Constraints:
Each person terminal must an can only connect to (1) isAttached terminal. Each
isAttached terminal can only be connected to (1) device terminal. Each device terminal
must have at least (1) capability terminal connected to it, and can only connect to (1)
connection terminal.

• Usability: must be easy to use, can be mastered in less than 5 minutes.
• Reliability: must always draw the selected terminal or connection.
• Performance: must take no longer than 2 seconds to draw the terminal shape or

connection selected.
• Supportability: - No debug nescesary, simple.
• Implementation: must be implemented with Eclipse GMF.

 83

--

Modification History – v1
*Owner: Frank Hernandez
*Initiation date: 02/08/2007
*Date last modified: 02/08/2007

 84

Use Case – Communication Model Consistency

*Use Case ID: 1.13_CommMdlConstcy
Use Case Level: High-level.
*Scenario: A misuser tries to execute a communication model including the same Skype
username more than once.

• Actor: CVM Misuser.

• Pre-conditions:
o A communication model previously developed in the Communication

Environment must exist.

• Description:
1. The misuser tries to execute the model, that is to instanciate the

communication schema.
2. If the schema does not contain persons already set, the system asks the miuser

to enter them.
3. The misuser enters the same Skype username (person) for either the local and

remote connections or for more than one remote connection.
4. The system validates the communication instance and encounters the invalid

scenario.
5. The system notifies the error condition to the misuser and does not execute the

communication instance.

• Relevant requirements: None.
• Post-conditions: The system does not execute the communication model.

*Alternative Courses of Action: None
Extensions: None
*Exceptions: None
Concurrent Uses: None
*Related Use Cases: None
--

Decision Support
*Frequency: This threat can potentially occur anytime when the CVM user executes a
communication model.
*Criticality: This is a critical integrity use case as it prevents the same person to be
bound more than once in a communication model, which could result in a inconsistent
scenario.

 85

*Risk: Fairlure to execute this function may result in an inconsistent communication
model.

*Constraints:
• Usability: -
• Reliability: the system must always validate this type of error condition.
• Performance: -
• Supportability: must clearly identify the subcomponent where an error occurred

in case of exceptions.
• Implementation: -

--

Modification History
*Owner: Ariel Cary
*Initiation date: 02/11/2007
*Date last modified: 03/20/2007
Version: 1.0

 86

8.3 Appendix C – Class Diagram For Analysis Model

Person_Terminal
<<CVM_Person>>

IsAttached_Terminal
<<CVM_IsAttached>>

AIToP
<<CVM_conIAToP>>

Device_Terminal
<<CVM_Device>>

Connection_Terminal
<<CVM_Connection>>

AIToDev
<<CVM_conIAToDev>>

DevToCon

<<CVM_conDevToCon>>

Medium_Terminal
<<CVM_Medium>>

MedToCon
<<CVM_conMedToCon>>

Master_Terminal
<<CVM_Terminal>>

Capability_Terminal
<<CVM_Capability>>

CapToDev
<<CVM_conCapToDev>>

Fig C.1 Minimal Class Diagram Of The Modeling Construction (Modeling Constructing

Profile)

Description The classes in this diagram represent all the non-terminal and terminal symbols

of the CML grammar, which is used in the creation of communication models in

RRCommSSys. This is a version compliant to the UML profile for the purpose of a better

understanding of GMF during the design phase.

 87

Communication Modeling Environment(CME)

Visual Environment(VE)

Development Envirnment(DE)

EclipseMAndITemp
<<DE_Templates>>

EclipseVisualEditor
<<DE_VisualEditor, CME_View, VE_View>>

EclipseVisualParser
<<DE_VisualParser>>

ElcipseVisualLoader
<<VE_VisualLoader>>

ElcipseVEController
<<VE_Controller>>

EclipseMenuSysAndDisp
<<VE_Model>>

EnvController
<<CME_Controller>>

EclipseModelTransformer
<<CME_Model>>

Repository Schema Transformation Engine (STE)

Model-View-Controller (MVC)
Architecture
inherent from the
Eclipse GMF and EMF

Fig C.3 Communication Modeling Environment

Description: The CME subsystem contains all the classes that are required for the modeling

environment. This diagram show all the classes as well as all the all the dependencies. It also

display the Model-View-Controller architecture pattern. This pattern is inherited from

Eclipse.

 88

Schema Transformation Engine (STE)

Parser

Repository

Communication Modeling Environment (CME)

StreamHandler
<<CVM_Pipe,STE_Controller>>

-instance

GMLToXCMLTransformer
<<CVM_GMLToXCMLParser, CM-XML_Parser>>

SchemaTransformer
<<CVM_SchemaParser, StoI_transformer>>

XML_Interface
<<CM-XML_Interface>>

Singleton Design Pattern
used during the implementation
of the StreamHandler to limit
the maximun number of controllers
to 1.

MasterParser
<<CVM_Parser>>

FileHandler
<<CVM_DataSource>>

Pipe and Filter (PF)
Architecture
was chosen for the
ctotrol and transfer
of data streams.

Fig C.4 Class Diagram For The Schema Transformation Engine

Description: This is the class diagram for the Schema transformation Engine. Here are all the

classes that will be implemented for the transformation of schemas into instances. And

architecture pattern of Pipe and Filter is used for controlling of the stream of data between

parsers. Also a Singleton design pattern is used to limit the instances of our controller to one.

 89

Synthesis Engine(SE)

Operation
<<Command>>

ConcreteOperation
<<Command>>

SkypeOperationInvoker
<<Command>>

SynthesisEngine
<<CVM_SynthesisParser>>

SkypePtHandler
<<CVM_DataSink>>

1
+receiver

User Communication Interface (UCI)

Skype API

Command Design Pattern
Used during the implementation
of the classes in the (SE)
package.

Abstract Factory Design Pattern
Used during the implementation
of the classes in the (SE)
package.

Pipe and Filter (PF)
Architecture
was chosen for the
ctotrol and transfer
of data streams.

Fig C.5 Package Diagram Synthesis Engine Subsystem.

Description: This is the class diagram for the Synthesis Engine subsystem. This are the

classes that will be implemented for the of the execution of the XCML. The Command design

pattern is used for more control over the calls that we will be making. Also the Abstract

Factory design pattern is used to allow in future development the replacement of the Skype

API for another platform, as well as to allow the system to run on multiple operating systems.

 90

Repository

InformationRepository
<<CVM_DataRepository>>

Rp_AccesInterface
<<RepositoryInterface>>

Facade Pattern
used to improve
communication
between subsystems.

Fig.F.6 Repository Package Class Diagram

Description: This is the class diagram for the repository that will be implemented on our

project. This repository will hold the metadata as well as the information for parsing our files.

8.4 Appendix D – Sequence Diagrams

 91

StreamHandler
<<CVM_Pipe>>

GMLToSCMLTransformer
<<CVM_GMLToXCMLParser>>

 : System

FileHandler
<<CVM_DataSource>>

SchemaTransformer
<<CVM_SchemaParser>>

SynthesisEngine
<<CVM_SynthesisParser>>

SkypePtHandler
<<CVM_DataSink>>

1 : loadFile()
2 : loadFile()

3 : transfromToXCML()

4 : convertToXCML()

5 : validateSchema()

6 : validateSchema()

7 : requestInput()

8 : convertToSkype()

9 : converToSkypeCall()

10 : addSkypeOperation()

Fig D.3 Sequence For a Schema Transformation

 92

StreamHandler
<<CVM_Pipe>>

GMLToSCMLTransformer
<<CVM_GMLToXCMLParser>>

 : System

FileHandler
<<CVM_DataSource>>

SchemaTransformer
<<CVM_SchemaParser>>

SynthesisEngine
<<CVM_SynthesisParser>>

SkypePtHandler
<<CVM_DataSink>>

1 : loadFile()
2 : loadFile()

3 : transfromToXCML()

4 : convertToXCML()

5 : validateSchema()

6 : validateSchema()

7 : convertToSkype()

8 : converToSkypeCall()

9 : addSkypeOperation()

Fig. D.4 Instance Execution

 93

/Canvas Entity /Person Control /IsAttached Control /Device Control /Connection Control /Live Audio Control

/ : Actor

1 : initApp()

2 : selectShape()

3 : drawShape()

10 : selectShape()
9 : drawShape()

8 : selectShape()
7 : drawShape()

6 : selectShape()
5 : drawShape()

4 : selectShape()

11 : drawShape()

12 : drawShape()

Fig D.5 Sequence Diagram For Voice Call

 94

/C a n v a s E n tity /P e rs o n C o n tro l /Is A tta c h e d C o n tro l /D e v ic e C o n tro l /C o n n e c tio n C o n tro l /C h a t M e d iu m C o n tro l

/ : A c to r

1 4 : s e le c tS ha p e ()

1 3 : d ra w S h a p e ()

1 5 : d ra w Sh a p e ()
1 6 : s e le c tS ha p e ()

1 : in it A p p ()

2 : s e le c tS h a p e ()

3 : d ra w S ha p e ()

1 2 : s e le c t Sh a p e ()
1 1 : d ra w Sh a p e ()

1 0 : s e le c t Sh a p e ()
9 : d ra w S ha p e ()

8 : s e le c t Sh a p e ()
7 : d ra w Sh a p e ()

6 : s e le c t Sh a p e ()5 : d ra w Sh a p e ()

4 : s e le c t Sh a p e ()

1 7 : d ra w Sh a p e ()

Fig D.6 Sequence For Chat Message.

 95

/ : CVM Developer

/Toolbox /Canvas /EclipseVisualParser /Repository

Shape is
Person
Terminal

Shape is
isAttached
Terminal

Connection
is PersonToIsAttached

Connection
is DeviceToIsAttached

1 : selectShape()

2 : dragObject()
4

<<store GML>>

5
<<validated>>

6 : display()7 : selectShape()

8 : dragObject()
9

<<validate>>

10
<<store GML>>

3
<<validate>>

11
<<validated>>

12 : display()13 : selectConnection()

14 : dragObject()
15

<<validate>>

16 : <<store GML()

17
<<validated>>

18 : display()
19 : selectConnection ()

20 : dragObject() 21
<<validate>>

22
<<store GML>>

23
<<validate>>

24 : display()

Fig D.7 Sequence For Create Local Non Terminal

 96

/ : CVM Developer

/Toolbox /Canvas /EclipseVisualParser /Repository

Shape is
 Connection
Terminal

Connection is
MediaToConnection

Connection is
RemoteToConnection

2 : dragObject()

1 : selectShape()

3 <<validate>>

4
<<store GML>>

5
<<validated>>6 : display()

7 : selectConnection()

8 : dragObject()
9

<<validate>>

10
<<store GML>>

11
<<validated>>

12 : display
13 : selectConnection()

14 : dragObject
15

<<validate>>

16
<<store GML>>

17
<<validated>>18 : display()

Fig D.8 Sequence For Create Connection

/ : CVM Developer

/Toolbox /Canvas /EclipseVisualParser /Repository

Shape is
 any terminal
shape from the
canvas.

2 : dragObject()

1 : selectShape()

3 <<validate>>

4
<<store GML>>

5
<<validated>>6 : display()

Fig D.9 Sequence For Create Terminal.

 97

/ : CVM Developer

/gmf : EclipseGMF / : Input Request Interface / : XML Doc

3 : saveFileNameDialog()

1 : saveModel

2 : saveGMFModel

9 : storeModel(XML_file)

10 : modelSaved

4 : requestFileName
5 : cvm_file_name

6 : cvm_file_name
7 : createXMLDocument(cvm_file_name)

8 : XML_file

Fig D.10 Sequence For Save File GMF

8.5 Appendix E – User Interfaces

Fig. E1.1 Load Request Form.

 98

Fig. E1.2 Impute Request Form.

Fig. E1.3 File System open file Dialog.

 99

Fig. E1.4 Visual Modeling Environment

 100

8.6 Appendix F – Detailed Class Diagram

ShapesDiagram

Connections

CVM_Shapes

CVM_Person
<<CVM_Entity>>

+personName: String
+personID: String
+personRole: String
+typeName: String = Person

CVM_conIAToP
<<CVM_Control>>

CVM_Capability
<<CVM_Entity>>

+base: String
+typeName: String = Capability

CVM_isAttached
<<CVM_Entity>>

+personID: String
+deviceID: String
+typeName: String = isAttached

CVM_conDevToCap
<<CVM_Control>>

CVM_conIAToDev
<<CVM_Control>>

CVM_Device
<<CVM_Entity>>

+deviceID: String
+isVirtual: Boolean
+isLocal: Boolean
+typeName: String = Device

CVM_Medium
<<CVM_Entity>>

+mediumTypeName: String
+derivedFromBuiltInType: String
+suggestedApplication: String
+voiceCommand: String
+typeName: String = Medium

CVM_conDevToCon
<<CVM_Control>>

CVM_conMedToCon
<<CVM_Control>>

CVM_Form
<<CVM_Entity>>

+typeName: String = Form
+formTypeName: String
+suggestedApplication: String
+voiceCommand: String CVM_Connection

<<CVM_Entity>>

+connectionID: String
+bandwidth: String
+typeName: String = Connection

CVM_conFormToCon
<<CVM_Control>>

Canvas for the GMF required to hold everything.

Simplifies the association of connections and shapes.
CVM_Shapes

CVM_ConMaster

source_conIAToP

target_conIAToP

target_conDevToCap

source_conIAToDev

source_conDevToCap

target_conIAToDev

source_conDevToCon

source_conMedToCon

target_conDevToCon

target_conMedToCon

source_conFromToCon
target_conFormToCon

Fig. F.1 Detailed class diagram of the Model Creation Subsystem As Used By GMF.

Description The classes in this diagram represent all the non-terminal and terminal symbols of
the CML grammar, which is used in the creation of communication models in RRCommSSys.

 101

Person_Terminal
<<CVM_Person>>

+typeName: String = Person
+personName: String
+personID: String
+personRole: String

IsAttached_Terminal
<<CVM_IsAttached>>

+typName: String = isAttached
+personID: String
+deviceID: String

AIToP
<<CVM_conIAToP>>

Device_Terminal
<<CVM_Device>>

+typeName: String = Device
+deviceID: String
+isVirtual: Boolean
+isLocal: Boolean

Connection_Terminal
<<CVM_Connection>>

+typeName: String = Connection
+connectionID: String
+bandWidth: String

AIToDev
<<CVM_conIAToDev>>

DevToCon

<<CVM_conDevToCon>>

Medium_Terminal
<<CVM_Medium>>

+typeName: String = Medium
+mediumTypeName: String
+derivedFromBuiltInType: String
+suggestedApplication: String
+voiceCommand: String

MedToCon
<<CVM_conMedToCon>>

Master_Terminal
<<CVM_Terminal>>

+typeName

Capability_Terminal
<<CVM_Capability>>

+baseCap: String
+typeName = Capability

CapToDev
<<CVM_conCapToDev>>

Fig F.2 Detailed class diagram of the Model Creation Subsystem From Profile

Description The classes in this diagram represent all the non-terminal and terminal symbols

of the CML grammar, which is used in the creation of communication models in

RRCommSSys. This is a version compliant to the UML profile for the purpose of a better

understanding of GMF during the design phase.

 102

Schema Transformation Engine (STE)

Parser

Repository

Communication Modeling Environment (CME)

StreamHandler
<<CVM_Pipe,STE_Controller>>

+transformToXCML(xmlFile: Data)
+validateSchema(schemaFile: Data)
+convertToSkype(instanceData: Data)
+Instance(): StreamHandler

-instance

GMLToXCMLTransformer
<<CVM_GMLToXCMLParser, CM-XML_Parser>>

+convertToXCML(XMLData: Data)

SchemaTransformer
<<CVM_SchemaParser, StoI_transformer>>

+validateSchema(schemaData: Data)
+displayRequestForm()
-updateSchemaInput()

XML_Interface
<<CM-XML_Interface>>

Singleton Design Pattern
used during the implementation
of the StreamHandler to limit
the maximun number of controllers
to 1.

MasterParser
<<CVM_Parser>>

FileHandler
<<CVM_DataSource>>

+fileName: String

+loadXMLFile(fileName: String)

Pipe and Filter (PF)
Architecture
was chosen for the
ctotrol and transfer
of data streams.

Fig F.4 Class Diagram For The Schema Transformation Engine

Description: This is the class diagram for the Schema transformation Engine. Here are all the

classes that will be implemented for the transformation of schemas into instances. And

architecture pattern of Pipe and Filter is used for controlling of the stream of data between

parsers. Also a Singleton design pattern is used to limit the instances of our controller to one.

 103

Synthesis Engine(SE)

Operation
<<Command>>

+Execute()

ConcreteOperation
<<Command>>

SkypeOperationInvoker
<<Command>>

+invokeOperation()

SynthesisEngine
<<CVM_SynthesisParser>>

+convertToSkypeCalls(instanceData: Data)

SkypePtHandler
<<CVM_DataSink>>

+addSkypeOperation(SkypeOperation: Operation)
+Action()

1
+receiver

User Communication Interface (UCI)

Skype API

Command Design Pattern
Used during the implementation
of the classes in the (SE)
package.

Abstract Factory Design Pattern
Used during the implementation
of the classes in the (SE)
package.

Pipe and Filter (PF)
Architecture
was chosen for the
ctotrol and transfer
of data streams.

Fig F.5 Package Diagram Synthesis Engine Subsystem.

Description: This is the class diagram for the Synthesis Engine subsystem. This are the

classes that will be implemented for the of the execution of the XCML. The Command design

pattern is used for more control over the calls that we will be making. Also the Abstract

Factory design pattern is used to allow in future development the replacement of the Skype

API for another platform, as well as to allow the system to run on multiple operating systems.

 104

Repository

InformationRepository
<<CVM_DataRepository>>

Rp_AccesInterface
<<RepositoryInterface>>

Facade Pattern
used to improve
communication
between subsystems.

Fig.F.6 Repository Package Class Diagram

Description: This is the class diagram for the repository that will be implemented on

our project. This repository will hold the metadata as well as the information for

parsing our files.

 105

Communication Modeling Environment(CME)

Visual Environment(VE)

Development Envirnment(DE)

EclipseMAndITemp
<<DE_Templates>>

EclipseVisualEditor
<<DE_VisualEditor, CME_View, VE_View>>

EclipseVisualParser
<<DE_VisualParser>>

ElcipseVisualLoader
<<VE_VisualLoader>>

ElcipseVEController
<<VE_Controller>>

EclipseMenuSysAndDisp
<<VE_Model>>

EnvController
<<CME_Controller>>

EclipseModelTransformer
<<CME_Model>>

Repository Schema Transformation Engine (STE)

Fig F.7 Communication Modeling Environment

Description: The CME subsystem contains all the classes that are required for the

modeling environment. This diagram show all the classes as well as all the all the

dependencies. It also display the Model-View-Controller architecture pattern. This

pattern is inherited from Eclipse.

 106

8.7 Appendix G – Class Interfaces

package execution.datasink;

/**

* Command call specific to a platform

* @author amortiz

*

*/

public class ConcreteOperation extends CommandCall {

 public void Execute();

}

--

package execution.datasink;

/**

* Class providing abstract factory pattern. Given the platform

* it returns the proper object for that platform

* @author amortiz

*

*/

public abstract class CommandCall {

 public abstract void Execute();

 public static final CommandCall getCommand(int type, int platform);

}

--

/**

 107

* Encapsulates the input and output of the filter processes

* @author amortiz

*

*/

package execution.datasource;

public class FileHandler {

 private String fileName;

 public void loadXMLFile(String fileName) ;

}

--

package execution.filter;

/**

* Parser that transforms GML to XCML model

* @author amortiz

*

*/

public class GMLToXCMLTransformer extends MasterParser {

 public void convertToXCML(Data XMLData);

}

--

package execution.filter;

/**

* All parser extend this class, representing the input

* processing, and output of a model

* @author amortiz

 108

*

*/

public class MasterParser {

 protected Data input;

 protected Data output;

}

--

package execution.filter;

/**

* All parser extend this class, representing the input

* processing, and output of a model

* @author amortiz

*

*/

public class SchemaTransformer extends MasterParser {

 public void validateSchema(Data schemaData;

 public void displayRequestForm();

 private void updateSchemaInput();

}

--

package execution.filter;

/**

* It creats a series of calls to the underlying platform based

 109

* on an input instance

* @author amortiz

*

*/

public class SynthesisEngine extends MasterParser {

 public void convertToSkypeCalls(Data instanceData);

}

--

package execution.pipe;

/**

*

* It is the entry point of the application. It gets the GCML file from
the user

* and passes it along to all the required filters to finally deliver it
to the

* data sink

* @author amortiz

*

*/

public class StreamHandler {

 private StreamHandler instance;

 public void transformToXCML(Data xmlFile);

 public void validateSchema(Data schemaFile);

 public void convertToSkype(Data instanceData);

 110

 public StreamHandler Instance() ;

}

--

package modeling.model;

import java.util.ArrayList;

/**

* represents a device capability on the communication model

* @author amortiz

*

*/

public class Capability_Terminal extends Master_Terminal {

 public String baseCap;

 public final static String type = "Capability";

 public Capability_Terminal(String baseCap);

 //mutators and accessors

 public String getBaseCap() ;

 public void setBaseCap(String baseCap);

}

--

package modeling.model;

import java.util.ArrayList;

/**

* represents an Connection on the communication model

 111

* @author amortiz

*

*/

public class Connection_Terminal extends Master_Terminal {

 private String connectionID;

 private String bandWidth;

 public final static String type = "Connection";

 public Connection_Terminal(String connectionID, String bandWidth);

 //mutators and accessors

 public String getBandWidth();

 public void setBandWidth(String bandWidth);

 public String getConnectionID();

 public void setConnectionID(String connectionID);

}

--

package modeling.model;

import java.util.ArrayList;

/**

* represents a Device on the communication model

* @author amortiz

*

*/

public class Device_Terminal extends Master_Terminal {

 public final static String type = "Device";

 112

 private String deviceID;

 private Boolean isVirtual;

 private Boolean isLocal;

 public Device_Terminal(String deviceID, Boolean isVirtual, Boolean
isLocal);

 //mutators and accessors

 public String getDeviceID();

 public void setDeviceID(String deviceID);

 public Boolean getIsLocal();

 public void setIsLocal(Boolean isLocal);

 public Boolean getIsVirtual();

 public void setIsVirtual(Boolean isVirtual);

}

--

package modeling.model;

import java.util.ArrayList;

/**

* represents an IsAttached on the communication model

* @author amortiz

*

*/

public class IsAttached_Terminal extends Master_Terminal {

 public final static String type = "isAttached";

 private String personID;

 private String deviceID;

 113

 public IsAttached_Terminal(String personID, String deviceID;

 //mutators and accessors

 public String getDeviceID();

 public void setDeviceID(String deviceID);

 public String getPersonID() ;

 public void setPersonID(String personID) ;

}

--

package modeling.model;

import java.util.ArrayList;

/**

* Represents every Terminal node of a communication model

* @author amortiz

*

*/

public abstract class Master_Terminal {

 private String typeName;

 public Master_Terminal(String type) ;

 //mutators and accessors

 public String getTypeName() ;

 public void setTypeName(String typeName);

}

--

package modeling.model;

 114

import java.util.ArrayList;

/**

* represents a medium on the communication model

* @author amortiz

*

*/

public class Medium_Terminal extends Master_Terminal {

 public final static String type = "Medium";

 private String mediumTypeName;

 private String derivedFromBuiltInType;

 private String suggestedApplication;

 private String voiceCommand;

 public Medium_Terminal(String mediumTypeName, String
derivedFromBuiltInType, String suggestedApplication, String
voiceCommand);

 //mutators and accessors

 public String getDerivedFromBuiltInType();

 public void setDerivedFromBuiltInType(String
derivedFromBuiltInType);

 public String getMediumTypeName();

 public void setMediumTypeName(String mediumTypeName);

 public String getSuggestedApplication();

 public void setSuggestedApplication(String suggestedApplication);

 public String getVoiceCommand();

 public void setVoiceCommand(String voiceCommand);

 115

}

--

package modeling.model;

import java.util.ArrayList;

/**

* represents a Person on the communication model

* @author amortiz

*

*/

public class Person_Terminal extends Master_Terminal {

 public final static String type = "Person";

 private String personName;

 private String personID;

 private String personRole;

 public Person_Terminal(String personName, String personID, String
personRole);

 //mutators and accessors

 public String getPersonID();

 public void setPersonID(String personID);

 public String getPersonName();

 public void setPersonName(String personName);

 public String getPersonRole() ;

 public void setPersonRole(String personRole);

}

--

 116

8.8 Appendix H – Project Schedule

 117

8.9 Appendix I – Diary of Meetings

Place: Classroom
Date: 1/23
Start: 9:00 PM
End: 9:30 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

Project kick off meeting.

2. Status

Everyone participated in coming up with ideas for the project.

3. Discussion

Understanding of the problem statement. Anticipated facing issues with the Eclipse GMF

solution due to its yet immature state.

Place: ECS 212
Date: 1/24
Start: 4:00 PM
End: 4:30 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

Meet TA Tuan Cameron to have a hands-on session on GMF.

2. Status

Asked specific questions to Tuan for the creation of the communication graphical

environment.

3. Discussion

Saw a live demonstration of GMF usage. Answered questions related to GMF links.

Realized GMF non-resiliency to changes in the class diagram.

4. Tasks

All team members will propose a class diagram for the graphical environment.

 118

Place: Undergraduate Lab
Date: 1/29
Start: 9:00 PM
End: 9:30 PM

Facilitator: Alejandro
Attending: Alejandro, Ariel
Minute Taker: Ariel

1. Objective

Revision of the graphical model class diagram. First GMF hands-on.

2. Status

Discussed the class diagram and made improvements. Completed a cycle in Eclipse using

GMF for implementing the graphical environment.

3. Discussion

Errors while running the GMF model. After running, issues when linking shapes in GMF.

Open issues to be solved later with the TA.

Place: Undergraduate Lab
Date: 2/2
Start: 5:00 PM
End: 8:30 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

Focus on deliverable 1 due on 2/20.

2. Status

Wrote down a list of use cases for the graphical and execution environments, and split the

detailed description of each one to be done by all team members.

3. Tasks

Alejandro – All uses cases for the terminal shapes; Frank – uses cases for model

execution; Ariel – generic terminal shape and persistency uses cases.

 119

Place: Undergraduate Lab
Date: 2/13
Start: 5:30 PM
End: 6:10 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

Slide preparation for after-Exam 1 presentation.

2. Status

Compiled one uses case and its sequence diagram to be presented in class.

3. Discussion

A portion of the 4-slide presentation was allotted for presenting by each team member.

Place: Undergraduate Lab
Date: 2/16
Start: 2:00 PM
End: 5:30 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

Focus on deliverable 1 due on 2/20.

2. Status

Created a class diagram for the execution environment. Split up document sections for

writing by the team members.

3. Discussion

Each member will: 1) draw sequence diagrams, and depict scenarios for allotted use

cases, 2) write various sections of the deliverable 1. All written material will be later

combined in a single document for submission.

 120

Place: Undergraduate Lab
Date: 3/16
Start: 5:00 PM
End: 7:00 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

Focus on deliverable 2 due on 3/27.

2. Status

Brain storm session for deciding the architectural and design patterns to be used in the

system design. Created a list of high-level packages that are going to be part of the

design. Split up document sections for writing by each team members.

3. Discussion

The following patterns were proposed
o Architectural: MVC, Pipe and Filter.

o Design: Façade, Abstract factory, Command, others.

Also, the following packages were considered:

Packages: Filter, Data source, Pipe, Data sink, Model, View, Controller.

The split up of the document sections are as follows:

o Ariel: concentrates on chapter 1

o Alejandro: concentrates on chapter 2

o Frank: concentrates on chapter 3

As well, we concentrated on fixing mistakes on deliverable 1, and focused on the

new class diagram and profiles.

Next meeting is going to be held on 3/20/2007 at 4:00PM, same place, for

discussing the UML profiles of chapter 2.

 121

Place: Undergraduate Lab
Date: 3/20
Start: 4:00 PM
End: 6:00 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

Focus on UML profiles for deliverable 2.

2. Status

Two UML profiles were proposed. One for the communication model creation

environment, and the other one for the execution of the model. A brainstorm session was

carried out for the model execution UML profile.

3. Discussion

A UML profile was depicted containing the following meta-classes: Parser, Filter, Pipe,

Data Sink, Data Source. This model is yet to be formalized by Frank.

Place: Undergraduate Lab
Date: 3/21
Start: 3:00 PM
End: 5:00 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

Focus on UML profiles and security use case for deliverable 2.

2. Status

Two UML profiles, model creation and execution, were depicted and drawn on paper.

We discussed the correctness of the profiles and agreed on the meta-classes contained in

each one. We also discussed about the security use case, the misuse case, which we also

agree on one.
3. Discussion

The UML profiles were formalized following the UML 2 notation.

The security use case that is to be included in the document is related to a denial of

service (DOS) scenario, in which a single Skype user is tried to be contacted a great

number of times in a single communication model. Since that could congest the network,

and may possibly result in a DOS situation, the system will prevent such scenario from

happening in the first place. Similarly, a sub-case of this is to call ourselves in a single

communication model. This is also not permitted.

 122

Place: Undergraduate Lab
Date: 3/26
Start: 4:00 PM
End: 5:00 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

Focus on finalizing software design document (deliverable 2).

2. Status

Missing sections of the document were split up among the team members.

Discussion

The current status of the SDD document was reviewed. Missing sections were identified.

Few sections were missing from the detailed design especially. We worked on the

generative architecture of the system. The rest was left as homework.

Place: Undergraduate Lab
Date: 3/27
Start: 2:30 PM
End: 5:00 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

Putting it all together in the design document (deliverable 2), and outline the presentation

slides.

2. Status

The SDD document was polished. As well, the presentation slides were finalized.

3. Discussion

Printed out final version of deliverable 2 document for submission. Selected what we

believed were the most important points of the document to be included in the

presentation.

 123

Place: Undergraduate Lab
Date: 3/30
Start: 5:00 PM
End: 6:30 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

Focus on the final deliverable due on 4/13.

2. Status

The document template provided by the professor was reviewed. The focus is on

verifying, validating and implementing the system.

3. Discussion

New sections were identified and discussed an outline as for the contents of those,

especially in the implementation area. Also, the template may suffer changes as needed

as advised by the professor.

Place: Undergraduate Lab
Date: 4/4
Start: 5:00 PM
End: 6:30 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

More advances on the parsers’ implementation were presented by Alejandro.

2. Status

The G-CML file can be parsed, transformed to X-CML, validated, and instantiated. The

next step is to make calls/send chat messages.

3. Discussion

Sample parsed files were analyzed as for the validity of them against the X-CML schema.

No apparent errors were found.

 124

Place: Undergraduate Lab
Date: 4/6
Start: 5:00 PM
End: 6:30 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

Implementational issues regarding the Instant Messaging part and Local/Remote person

identification problem were discussed.

2. Status

No explicit way to send an Instant Message seems to exist in the communication schema.

3. Discussion

No optimal solution exist without modifying the communication schema. Potential

workarounds are: 1) Similar to sending a file, specifying the file and the URL, and the

file contains text that is read and fed in as an IM; certainly, not the most efficient

solution. 2) Put the message in the mediumName attribute, leaving the URL blank, that is

"borrowing" the attribute. We rather workaround 2. On the other hand, after some

thought and clarifications from the Professor we have decided to use the Role of a person

to say if that person is the Local or the remote user. Also have one for a meeting to

prepare the presentation that will be done on the 4/17.

Place: Undergraduate Lab
Date: 4/9
Start: 4:00 PM
End: 5:30 PM

Facilitator: Alejandro
Attending: Alejandro, Frank, Ariel
Minute Taker: Ariel

1. Objective

Review deliverable 3 document sections and user’s guide.

2. Status

The section writing is in progress. Expected end time is on 4/13.

3. Discussion

Several sections for the implementation and test cases parts were reviewed. There is

going to be one test case proposed per use case. We shall agree on the tabular format to

record the test results in next meeting. Also, screenshots for the model execution part

were collected to be included in the user’s guide.

 125

References

[1] Peter J. Clarke, et al. A Declarative Approach for Specifying User-Centric
Communication. Collaborative Technologies and Systems, 2006.

[2] Peter J. Clarke. Evolution of Software Design, Overview of MDSD. Class notes, CEN
5064 Spring’07 Software Design class.

[3] http://en.wikipedia.org/wiki/Skype

[4] Eclipse Official Website

