CEN 5011 — Advanced Software Engineering — Section U1l

Modeling

Environment for the

Communication
Virtual Machine

Final Document

Team 2

Lazaro Pi

Leandro Wong
Manasa Bharadwa)
Sandeep Varry
Jorge Jauregui
Marc Gauthier

Professor: Peter Clarke

12/04/2008

Abstract

Communication plays a critical role in every field of human endeavor. It is especially
important in collaborating projects done by small teams. It i1s used in steps like
brainstorming, sharing of findings, progress reports, and presentation of the results and
thus, it can determine a research project’s success or failure. The lack of fast and effective
communication could greatly hinder a project’s progress when team members are separated

by large distances.

The purpose of Communication Modeling Environment (CME) is to allow members of those
teams to create communication models that can be later executed on the Communication
Virtual Machine (CVM). All of this while seamlessly integrating different communication
systems to automate the process of switching between them to achieve cost efficiency or
communication quality. To achieve this we analyzed the system in use at our client’s
facilities and developed a project plan for our proposed system. The CME will be created
using model driven software development techniques in an easy to use graphical modeling
framework, which will eventually allow us to deploy a communication application
employing the features already present in applications like the Skype and Smack API's. In
particular, we aim to support the creation of CML models in a graphical environment and
the seamless conversion between GCML and XCML formats. We will be able to produce a
complete schema instance in the CME. The system will be able to load and display
schemas in the modeling environment. The system will also store models in GCML and

XCML format, including layout information.

N 2 N 2

TABLE OF FIGURES. ...ttt ctterccrtenccsneeesessesessesseeessssseessesssessessasessessssessssssessssssessessnnessessnsassssasesssssnsens 8

1. INTRODUCTION......tiiiciiiiciteeicnieteeieseeeeeesseeesessseesessssessessssesssssseesssssssssssssesssssssesssssssassssasassessnsesssnns 9

1.1. PURPOSE OF SYSTEM....coetetrtetetrertertrtatestresiereestesesesteseststssesesssseststssesesessesesessssestnsssesesessesesessesesessasesenens 10

1.2, SCOPE OF SYSTEMcuetrieuiirietertreniereststesiessesesessesestsseseststasesessssesestssesestssasesessssestnsssesesessesesessesesessssesenens 11

1.3. DEVELOPMENT METHODOLOGIESccovietteitieiteeiteieesteesteeisesseesseesseesesseessesssesssessessesssessesssessesssessssssees 12

GCIMI MEEAMOE] ...ttt b et b et et be sttt e et e et ne e s e e be e eaenn 14

1.4. DEFINITIONS, ACRONYMS, AND ABBREVIATIONScvcivtiitienreereereeeteenreeiseereeteesseeseessesssesseensesssessnenes 16

1.5. OVERVIEW OF DOCUMENTcoitiitietietteeteeireeiseeteesteesseeisesssesseesseessesssesseesssessssssssesssessssssssssesssessessesssens 18

2. CURRENT SYSTEM.......ceiiecttierterereereseeseseessssssessesessesssssssssssssasssssssssssassssesssassssassssssssssssssssassssesssassssases 20

3. PROJECT PLAN ...t teccteectereeeseeeessstessstesssessssessssssssssessssesssssssssssssssessssessssessssessssssssssassnsesssassssanes 21

3.1. PROJECT ORGANIZATIONoeiveiitiieieseeetteeteesteeseeeteesteetessessseesssensssssssssesssensssnsssssesssessssssssssssseessessssssessses 21

3.2. HARDWARE AND SOFTWARE REQUIREMENTScvteeueeeeeeeeeeeeeeeseseeseseeeesesesseesesesesssssessesessessessesessnes 23

3.3. WORK BREAKDOWN.......coitiiititietieeiteeeiteeeireesireessseessseessesesteseasesssessseesaseessssessssensessasessssesssesssseesssessseensens 24

3.4, COST ESTIMATE ..ottt sttt bes sttt be b st b be st s b ek et seebeb e st b ese e s be ke st st ebenesbebe st sbebeneneebenan 25

4. REQUIREMENTS OF THE SYSTEM.......tiiiiiiiicteicteiceescseeseseesssssssssssssssessssessssssssassssnsesessasssnens 26

4.1. FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTSeeveveeeeeeeeeeeeeeeseseseeseseseseseseseseesesesesesesessasens 26

4.1.1. For functionalities corresponding to creating the model..........cccoveevreinieennecenceeere e 26

4.1.2. For functionalities corresponding to loading and storing the modelc..ccccoovevvevieeniienenienene. 27

4.1.3. For functionalities corresponding to Transforming and validating the model............................ 28

4.1.4. For functionalities corresponding to Security of SyStem........ccccevvevieeeiiiciiiciceeeeeese e 29

4.2, USE CASE DIAGRAMScutirieteuiieietirietetesestesetstetetssesesesestesessesesesessesenessesaneasesanessssasessssenesessesensssesenesens 31

High level Use case Diagram (DACKAZES)cceivivveveiviveieiiiseseeseesessssssesae s sssse s sssse s sesse s ssssssessssssassessssassenes 31

Model Creation and EdItIngccccociiieiiiiiiiieeeeesistes ettt s s s e e eseeseebasaassesseseessssessessesseseans 32

Model TranSfOTIMATIONc.ccviveietiitietecteeete ettt ettt ettt et e st e bttt eteeteebesaesbe st eseebeesessessesseseetsereesessensesseteebessensensessesenns 33

SECUTIEY ettt ettt ettt b bt h bbbt b e bt s e b e e e b et b e bt e e b b e b e st s b e b et eb et e b ene s bbb e b et ebe st et ene st eb e s ebenens 34

Use cases for Implemented SCEMATIOS.cuiuuiiieirieeriiieisieeieeesteeste et ssesessesetetesessesessesessesesessesassesessssessssesessases 35

4.2 1 USE CaSE DESCIIDEIONS. ...ttt ettt sttt sttt et te et ste st s s te s stesse s steessensens 35

4.3, REQUIREMENT ANALYSTS. w.eveuieiteteeeeeseeeseseeeesesesesesesessesesesesesesessesesesesssessasasesesesesesessasesesesssesessassesesesesens 37

5. SOFTWARE ARCHITECTURE..........oieienctercetseseessssessssessseessssesssaesssssassssssssnssssssssssssssssssssens 38
5.1. OVERVIEW.cviittiitteiteeiteeteeteesteesteeteseesteesteessesssesteesseesessssssseaseeseeaseessaatseseessesssestsesteeteessesssestseseesesnens

Modeling Environment: Model-View-Controller
Model Transformation and Validation: Pipe and Filter

REPOSIEOTY .ttt sttt e et et b e e et s e beebe s b e et et e s e ess e b e e b e s b e b e st eseebeebeebe b entereeReebeebe st enseneereerenrenee 39
PacCKage DIAGTAINLc.cciiiiiiieiccce sttt sttt st b e e s b e e te s b e b e st e s e e bt ete e b e s be b e st eseebeetesbe st enteseerenrn 40

5.2. SUBSYSTEM DECOMPOSITIONcvvitiiitiieeiteeiueesteetesseesseesseesssensssssesssesssenssesssssessssssssssssssssssesssessesessses 41
5.3. HARDWARE AND SOFTWARE IMAPPINGcovviitiiteiieiteeeteeieeseesteeetsetseseesssessesssesessssesesnsesssesssessesnsssnnes 41
5.4. PERSISTENT DATA MANAGEMENTccvttiitteeiteeiiteeeeeesteeesteeeeteeeiseesseesseessssessessssessssessssesssseessssessseensesen 42
Persistent Data fO1 GOc.oceeueeeeeieiisieisiisieisiesiesseistss st etss st s ss e saasassessase s asssssssassssessassssessssenes 42
FIOTINI Lottt et e e et ae et e b e e b e be et e b e e ta e be Rt ebe et e et e abe et ebeetaebeeatenbeeteebeareenbenreens 42

6. OBJECT DESIGN

g =10 s LU 42
AACTIONI: ..ttt ettt et ettt e teebe et et et eaeeteebeeteebe st eatebeebeehebe b easeaeebeebesbeabentetsereeteebebeatessentereetestesentereereeteatans

Capability Type:
DBVICE! ..ttt bbb ettt beete b e b erteheeheeteebe b e Rt ereeteebeebe b easeneebeebeetebe st eseereeteabennan

6.1, OVERVIEW.....ctiiteuirirteteirtetetsteteststetesestetesesessesenesseseaeasesasesseseseessesenestesenessesenessetanensesasesessenensssesanessesanenes 46
MiInimal ClASS DIAGTAINSccecveeeeeisieieiisieietisietsssteisssstssasssessssssssssse s asassessase st assasessassasessassssessaseaen 46
CINECONEIOILEY ...ttt ettt et s e e b e st e et e e beeta e beeae e beetaebesseenseebsesbesseensesseessesbeessenseessessesssensesssensessaans 46

UCT aNd REPOSITOTY «.cueviuiieiiieieirieitrtetesiet sttt ettt sttt b et b et h bbbt bbb e bt s b e bt b e bt st b e e sbesenaebenennenis 46
COIMUMIEIITS ..evveevreteeteete ettt et et e e e ebesteebeeteesaesbeeabesbeessesbeessessesssessesaeeaseassessesseensenseessesseessenseessesbesseenseessensesseensenseensessaans 48
Briefly describe the purpose of having certain classes in certain SUDSYStEMS.......c.covvverveveveerinrnirieieeeenens 48
1353 TSP 48
D03 41 1 TSROSO 49

6.2, STATE MACHINE ...ccoeuitrieteitrtetettntstettrtstetesesteb st seteststebesesestes et sbebe st sebesesaeseatasebesesesbeseasebesenesbesenessesenesene 50
Model Creation SLALECRAALTccucoveiveceeeeieieiesiesiesesestes e stetete e ste s e s e sssssassesssasssssessesesssssessessassensens 50
Model Transformation SEALECAAITccceueceeeveceesiesesesisiesiteitssesietestesestessesessestassesseasssssssssssssesens 51
) oI 170 3 o 1 72 L) 4 T TSR 52
Administration and SECUFILY SLALECAATT..............cc.ccuceeeeeeeeieseseeisiecieiesieisetesies st eissse s e e sseisesessssssesens 53
6.3. OBJECT INTERACTION (SEQUENCE DIAGRAMS)ovveeieieieeeeeseeeeeeseeeeeesestesseeeeeseseseesssesesessessesseseenns 54
6.3.1. Open Exiting GCML MOdElcvoiiiiiiiieieiceceseseeeeeeee sttt sttt st be b saesessesbesaeneas 54
6.3.2. Create File Transfer MOl ..ottt ettt ettt et et ss et st eteebessennan 56
6.3.3. Convert Model from GCML t0 XCMLu......c.ccecirieiririeirieisieiisieisie ettt s s sesss e s sessessssesessssesessesas 58
6.3.4. Convert Model from XCML t0 GCMLu.......c.oovooiiiiiieiiieeeceeecte ettt ettt et s sv st ere v enen 59
6.3.5. Import Model from XCML........cccoiieirieeireesieese ettt sa st e e saesessese s ssenessenees 60
6.3.6. Add Model t0 REPOSIEOTY ..vvveeeniriirieieirieiiieteisie ettt ettt e e te e ssesessesessssenessenesansens 62
6.3.7. Edit Model Metadatancoeiiieeeeie ettt sttt ettt b b see s e e nean 63
6.3.8. Validate MOAELc.ooiiieeeee ettt a sttt s st et be s e et et e st bt seesbente e enene 64

6.4. DETAILED CLASS DESIGNcotiiitiiotietiieteeeteecteeee et ee e eetesaesteesteetessaesteesseeseessesseesseesesssesteesessesssessesssens 65
DESIGIN PALLEIIIS USEU........c..oeeeeeeeesesisisteteeieete e e st st s e st et et esae et e sessesta e sssatsassessessesssssessensansansens 65
SINGLELOI PALLEITL ..eiiviciiiiiciiieeccee ettt ettt ettt saeseebe et e s b e b esaeseebestesbessenseseesesbestensesseneeseatens 65
Factory Method PAtteriloccccieiiiiiiccces ettt sttt et st b et et eebeste st et e s esaeteeaestessaneensenas 65
AAPLET PALLETTL ..viciiiiiiiicececeee ettt sttt st s b e e e s s e e b e et et e be s s e st et e eb e st e b e ae st eseetesbensenteseeseereaten 65
Observer Pattern and Command Pattern.........co.ccveiriiiiiiiiieece et 65
CIASS DOSCEIDEIONSvveeeeeeeveeieiesieisiesietsteste s te et s et e taste e ese e tsase s etesse st ata s essasa st et s ase st etassessssesesessesasessennas 65
CmeController (SEe APPENAIX C)ccvveeeiveeceeieeeeieeeeeseeeete e se et ae st esas s st es s s sessesesssssesassesssesssenassesaneens 65
Repository (568 APPEINAIX C) ...vvueviecreieeeeieeee et teeee e seseste s st sessesssesesesassesassssssssesessssesasaesesassssensssssnans 65

UCT Engine (86€ APPENGIX C)...uuvvuveiverireieeeeeieeeeeeeeeeessesseesesessssssessessessssssssssssssssssssssssssssessssssssssssssssssssssssssssssssesses 65

L D (o (=] AU 66

7. TESTING PROCESS ... teectiecttrctercttseetessstesete s s e e sessesesstsssssesssaessssesesstsssssessssesssssssssessssesssssassnsasas 67
7.1. SYSTEM TESTS. ..utietteetietieeeeteeeteeiteereeteeeteeteesesteesteesteesesseesssesssensesssssseeaseessessessseasesnsessseessestsetessesseens 67
7.2. SUB SYSTEM TESTS....vtecttitieteeeteeeteeereeieeeteeeteesteeesesteesteesseesesssesseesseenssesssseesseesessesssesseessessesssssssensesssens 83
7.3. UUNIT TESTS. cueeetteeteeete et et eeteeete et eteeeteeebeeaestaesbeesbeebesaeesbeeseeasesseesbeenbeesseesseabeeabeessestseteenteensesasesteenseeneas 86
7.4. EVALUATION OF TESTS. .. itetectteiitieeitee et e et eette e eteeeeteseeteeetesestesesesstesesssessesessesensesessesssesensessnsessseesseess 92
8. GLOSSARYceiiccierceerceeessnteesstesstesessessssesssssessssessssessssessssssssssessssessssesssssssssssssssessssessssasssassssssessssessnes 94

9. SIGNATURES ...ttt bt st s a s b st s s b e b s s s b st saesaesbe b ent s 96

10. APPENDIX ...ttt ceeeseee s e et s e see s s sat e s st e s e s e s e e e s e et s s et assseesssne s saesssnesssasassasessssesaseesssnesssnns 97
10.1. APPENDIX A — PROJECT SCHEDULEcveeveiteeteeteeeeiteesteenseeeesseesseenseesesseesseessesssssseessesssesssesssessenns 97
10.2. APPENDIX B —TUSE CASES.....ciitiitteitieeieteecteeete et et esteeteevesteesteesteessesaeesteesseensesseesteesseensesnsssseensessesns

10.2.1.1. Drag Object to Canvas
10.2.1.2. Create Edge between Objects
10.2.1.3. Create New Empty MOdEl........ccooiiiieieiiiiiseiecetse ettt sb e st be b nnan
10.2.1.4. Create Generic MOdel.ottt sttt e
10.2.1.5. Open Existing GCML MOdEL......cc.ciriiinieirieiiiiicirieeereeese sttt
10.2.1.6. Create Group Chat MOdelcooiiiieiiiiiieeec ettt sttt ae s
10.2.1.7. Create 2-Way Voice Connection Modelcccoceriiineiinieiniicnniceniecisenieeseeeseseeesnee e 110
10.2.1.8. Create File Transfer MOdel.........coo oottt ettt et sa e et eveereanen 112
10.2.1.9. Convert Model from GCML to XCML.... ... 114
10.2.1.10. Convert Model from XCML t0 GCMLi......ccccvrieirieiirieirieerieeesie et seees 116
10.2.1.11. Add Model t0 REPOSIEOTY ..ouveveeirieiiieieirieiisieeis et ettt sttt s seseste e saesenennas 118
10.2.1.12. Import Model from XCIML........cccccoioiiiieiiiciciceceee ettt sa et r e neebesbesbe s ene 120
10.2.1.13. Import Model from GCMLccoioiiiiiieecieeee ettt be st s nene 122
10.2.1.14. Transform ODJECt DAtaccccccviiiiiirieieicececeeeeee ettt st b e re b ebe st b annens 124
10.2.1.15. Generate Layout Dataccccociiiiiieieiceceseeeeee ettt sttt be st be st ns 126
10.2.1.16. Calculate Shape and SIZE........cccceeievierieieiiiiiirieieiee sttt st ss e se st stesbessesseseessssessessensenes 128
10.2.1.17. Calculate CoordiNates.......coieireiririeirieierieierrie ettt sttt b ettt et et se b e enes 130
10.2.1.18. CheCk OVETLAD .ccuociiiiieeicieeiceeeeee ettt sttt b e sttt seebesbe st e aessesseseabestesbessensans
10.2.1.19. Validate MOUEL......ocveiiieieiicieeeececee ettt sttt e te et be s ra e b e sbe e s e beersebesssenbesraensesseensenes
10.2.1.20. Check Model Schema
10.2.1.21. Check Semantic Rules
10.2.1.22. Print MOAEL ..ottt sttt s e bbbt ne b b e e et e e e enes
10.2.1.23. Edit Model Metadata
T0.2.1.24, TLOZII ettt ettt sttt a et s bt et e st e st e b e bese e e e me e st e ae e b e e b e s enseneeReeb e be et et eneeheeaeete et ete s eneenenean
BTS20 025 SO 7= o1 & RS RSRUT SO
10.2.1.26. Create Mirror Backup of Repository
10.2.1.27. Encrypt Sensitive Data
10.2.1.28. Create Authorized User Account
10.2.1.29. Change User Account PassWordccccceviiiiiriiiiiniiisiseeieeceese et ese st sse e 153
10.2.1.30. Delete USETr ACCOUINLc.criiuiirieiirietiieieireeiestei ettt ettt sttt b ettt sttt b et ebe e e b e be st seebeneenes 154
10.2.1.31. Suspend User Account after n attempts .156
10.2.1.32. Lock RUNNING APPLICALION.....cciiiiiiiieieieieerieieeeeee sttt sttt et esessesbesbensenes
10.2.1.33. Unlock APPLICALION c..ouviuieiieiieiieiisieieietet ettt sttt sttt ese st sbessestessesessessessessensens
10.2.2. Misuse Case Descriptions..............
10.2.2.1. UNAULNOTIZEA ACCESS .uvvirieieiiieiiieieisieieste ettt sae e et e e teseseete e ssesessesensssasessenessssenneseneres
10.2.2.2. Unauthorized Use of RUnning APPliCAtIONccceevvieeriririeieirieenisieiseeseee e 163
10.2.2.3. Delete Data in Repositorycccceceveneenncnnenne.
10.2.2.4. Read Sensitive Data in Repository
10.2.2.5. Access System with Stolen Credentialsccoccciivevieiiiiiiiiereeeeeee e 167
10.2.2.6. Access System with Expired Credentials..........ccccciiveieiiiiiicinieceeeeeseceeeeeee e e 168
10.2.2.7. Access System after Many Login AttemPtS......cooicevieicieiiiicereeeeeese e 169
10.3. APPENDIX C — USER INTERFACE DESIGNcoueuiiiieieirirteinirieeeeieteseseesesesastee st se s senessesenessenas 171

Login popup window
Administrative Window for editing Users

Administrative Window for editing Models Metadata...............cceouvveeevvsecesiesieiisesieiisiesesnsiesssennns 173

Model for with simple IINES And SHAPDES............cccceeeeeeieeisiieiesiieieeiieieesiesiesesesessesssee st sssessesesssssenns 174
Model for CML Model for a 2-way VO0IC€ CONMMNECLION............c..ccveevsiesiesesirsissirsissisesisisessessessssesssssssenns 175
(0 L=l s T L g 2 Lo =Y S 176
Enter Name fO8 NEW IIOUEL..............ccocuevecueeesiesesiesieiesiteisteteteste e tesses e ssestessssssessessessessessessessessessennens 177
Enter name fO1 NEW IIOUEL 2................eoeeceeeeeeeeeeeeeeeeeeeeeeeeeeeeeveeseeeeeeeeseeiseeesessesseassessasssssessasessesseaeen 178
INEW IIOACI CROALEU. ...ttt ee ettt et e et ete et e et e et a et et e e be e s e s tsesssesssenseaaen 179
10.4. APPENDIX D — DETATLED CLASS DTAGRAMSootitiiiirieiiirieieeseeteie sttt sesaesee s see e senesessenas 180
CIIEQONILLOLIET ...ttt ettt et e et e e et s et e e s etaets et eas et et et e et s et e atsetsetseaseasessensssaassases 180
(€3 27 SR 181
LG R 182
1) 20T 17) 3 OO OSSO 183
D, (e 77 SRS R 184
10.5. APPENDIX E — CLASS INTERFACEScvtrtiteieirieieiinieieitresieteeste bttt st b sestesese b b sesasbesesessenenenen 185
Modeling Environment (geml.diagram and gCMLEdIt)................ccceeeeeeeeeeeeeeeereeeseerereeisieressversenaes 185
(€0 10V 0 o) =oAL o Te L= (SR 186
D, Cedr7) o) o) L=t AL (o L= 218
) o1 17 2 227
UCI (Transformation and VAIIAAEION............cccooeoveeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeee v e seseseeresss s eneseesesssees 230
AdMINISEIALION AN SECULILY.......c.ocvvcveeseieeeisiesieissesierssestsssse s ss et ssesse s s e se st s se s esassesssssssessesessessssessnssns 236
10.6. APPENDIX F — DOCUMENTED CODE FOR TEST DRIVERSc.covueiirieienerieieerieieeseeiee e 237
10.7. APPENDIX G — DIARY OF MEETINGS AND TASKS ...c.oititiiririeienirieieerisieese sttt 240
IMOOLITIG L.ttt ettt ettt ettt et et s et et e st et et ete et et et et e st et et e ssasa s et s asa st etaasennesensenens 240
DMEOLIIIG Dottt ettt e e et et et et et et s s e e s s et s et e e ttett e st e st e st et s s e et e et e teeteetsets e st eat et easenes 240
Lz] 5 2 Y= A TSRO 240
L2z 2 Y= S SO SRRR 241
W2z 2 Y= S 241
W2z 12 Y= o A 242
W2z 2 Y= 242
B =TzT 12 Y= 243
W =TzT 12 Y= 244
W =TT 12 Y= A 244
IMOOLITIG T 1ottt ettt ettt sttt et et et et e s et e st et et e te et e st et st e st et et e ssase st et s asessetasessesesesens 245
IMOOLITIG T 2.ttt sttt et et et et e s et e st et et ete et et et et e sseta e seesa s et s ase st etaasessesesnsens 245
W 2o 12T O ARSI 245
7 LETeT 5 2 Y= RSOSSN 246
DMEOLIIIG T8ttt te et e et ettt et e st et et e s e e s s et e e be e st e ts e st e st e st et e s e saas s teetseteatsessessesseasenes 246
LTz T 5 2 Y=g A SRS 246
W2z 12 Y= /£ 246
W2z 12 Y= R 247
W LTeT 12 Y= 247
WL TzT 12 Y= 248
W L=TzT 12 Y= 248
W L2TzT 12 Y= 249
IMOOLITIG 2Bttt ettt ettt et et e st et e s et e st et et ets et et et et e st et et e ss et et et e et et etesesnesesnsens 249

DMEOLIIIG 2.t ee et e et ettt et et et et et st e et e et s e te e bt e ts e st e st e st et e e et e et s e testsetsatsessesseaseasenes 249
WLz 12 Y=g < 250

Table of figures

Figure 1 Graphical tree view of "acml ecore" from ECliPSEcccuvieeiiciiiieiciee ettt 15
Figure 2 High level use case dlagrami.......cccooiiiieiiiiiiiiicieccieecteeste ettt re e eveesveesve e ve e aee e 31
Figure 3 Model creation and Editingccccooeiiiiiiiiiiiiiiccceceeee et 32
Figure 4 - Model Transformation SChemac.oiovevviiiiieiiiecce et 33
FIGUIE 5 SECUTILY .veuveuieieeiieiisiesteee ettt sttt ettt a e ese e b e s te s et eneeseeneesessesenseneenens 34
Figure 6 Use cases for implemented SCENATIOSccovuiiiecieriirieeienie ettt 35
Figure 7 Package diagrami........ccoceiiiieiiiiicee ettt sttt sttt ne e e nns 40
Figure 8 Persistent data for GCML, FOrm........cccccooviiiiiieieiiiieee e 42
Figure 9 Persistent Data for GCIML, Personcccoiiveeieiiiecciieiececceecte ettt ene s 42
FIGUTE 10 ACEION....oiiiiticiiceceeeeee ettt sttt et e te et et e te e b e s beete e besbeesaenbesteeaaenbesteessestesseenseneas 43
Figure 11 CapabilityTyPe ...ccoieiiiiiieece ettt ettt et et et be e beesbe e e teestaesavesareeanes 43
FIGUTE 12 DBVICE c.eeeiieieieieeeeese ettt sttt st e et et e aeseeeneensesteeneenseeseensenseeneensenees 43
FLIGUTE 18 TSI ittt sttt st et e b e st e e be et e s teebee st e stesseentesseessantesseensenss 44
Figure 14 Minimal Class Diagral, CmeControllerccccooiverierieieiinireseseieeeesese e 46
Figure 15 Minimal Class Diagram, UCl and repoSitOry......cccuuiiiicieeeiiciiieeciiiee e scieeesetree e ssteee e ssiree e e sveeeeeeees 47
Figure 16 Minimal Class Diagral, GCML.........ccccocoiieiriiinineeeesese e 48
Figure 17 Minimal Class Diagram XCMLic.ccccoooiiiiiiiiiiicceeeee et st 49
Figure 18 Model Creation State@CRATTccccoviiiiiieieieicese e 50
Figure 19 Model Transformation Statechartccccoivvieveiiiiecieiceeeecer et e 51
Figure 20 Repository Stat@ChaTtcccvccveiiicireceeeee et nee 52
Figure 21 Administration and Security Statechart.........ccccoceviiiiiiiiiiccccceeee e 53
Figure 22 Sequence Diagram , 0pen gCml........ccccooevieieiiiniiniieeeieieese e enen 54
Figure 23 Sequence Diagram, Create File Transfer Modelccccevveivenineneniniincncneseenes 58

Figure 24 Sequence Diagram, Convert GCML to XCMLccccooeieiririnineceeeeesesereeeeees 58

Figure 25 Sequence Diagram, Convert XCML to GCMLcocooovieivieiiciieiecceeceecee e 59
Figure 26 Sequence Diagram, Import form XCML.........ccccooviriiieieiiineseseeeeeee s 62
Figure 27 Sequence diagram, Add Model to Repositoryccccvieeeiiiiecieneieeceseceeecre e 62
Figure 28 Sequence Diagram, Edit model Metadata........ccccoveeveeiiiiiieiiiecieececeecee e 63
Figure 29 Sequence Diagram, Validate Model...........ccccoooiriniieieininineneeeeee e 64
FIgUre 30 UL LOGIN c.ocuiiiiciececieceeeeseee ettt sttt et st e e beste e st e besssensesseessenseseeesaensens 171
Figure 31 UI, Administrative Window for editing USEerscccceeevveveeirenienienieeeesesese e 172
Figure 32 Ul editiNg USETS....cciccieviiitiiieiiesieeieie st etete st et e st stessae s e s reese s e sreessessesssessesseessessesseansensens 172
Figure 33 Ul, editing metadata.......cccciiiiiiiiiieccciececeeeete et re b e re b e re e 173
Figure 34 Model with simple lines and Shapes.......cccocvveiiiieeciiiceceee e 174
Figure 35 UI, Model for CML model for a 2-way voice connection...........ccceeeeveereevenreereervennenne. 175
Figure 36 Ul create New MOELcccoooiiiieiee ettt st ae e 176
Figure 37 Ul enter name for New modelccooieieiiiieieiiceceeeeeee e 177
Figure 38 UlI, enter name for new model 2..........ccooivieiiininienicieeeeseeee e 178
Figure 39 Ul new model created.........coooveieiiiieiiiiceeeseeee ettt sre s 179
Figure 40 Detailed Class Diagram, CmeController..........ccoovevieeiiieiienieniecieceeceeceeeve e 180
Figure 41 Detailed class diagram, GCML.........ccccooiviriieneieieeeeseseeee e 181
Figure 42 Detailed Class DIiagram, UCH...........uuiiiiiiii it ettt e e e e e e ecvtere e e e s e e ssnntaeee e e e s eenssneeeeeeesennnns 182
Figure 43 Detailed Class Diagram, REePOSITOTYcccccvveviiiiiiiiiiieieecie ettt eeeeve v 183
Figure 44 Detailed Class Diagram, XCMLi.........ccccooviiiiriinieiieiieiciseseeeeeeee e 184
1.Introduction

This chapter constitutes an introduction to the Communication Modeling Environment
(CME). In this chapter we will describe the system to be developed, namely a brief

introduction of its purpose, the scope that it comprises, functional and nonfunctional

requirements. It also presents a list of definitions, acronyms, abbreviations that will be

used throughout the text and an overview of this document.

1.1. Purpose of System

The system is divided in two parts: the first one is a set of metamodels, tools, and graphic
interfaces to describe and create communication models in GCML (for definitions of this
and other words, please refer to section 1.3). The second part of the system comprises a set
of transformations to convert between GCML and XCML formats.

The application can be run from the Eclipse Platform, and offers modelers the ability to
create graphical communication models (GCML) that will be executed later. Modelers can
drag shapes and edges to a canvas to describe those communication models, and save them
for later use. The system will also be able to produce a complete schema instance in the
modeling environment. The second purpose of the system is to transform models in GCML
to schemas in XCML and vice versa.

With this system the user will also store models, in both formats, XCML and GCML.
Moreover, the system will be able to load and display schemas in the modeling
environment. In the load operation, layout information will be included. Some schema

validation will be provided in this project.

For functionalities corresponding to:
1. Creating the model.
2. Loading and storing the model.
3. Transforming and validating the model
4

Security of System.

10

1.2. Scope of System

The system will be implemented in Java and will have two decoupled layers: Modeling

Environment (ME) and Users Communication Interface (UCI).

This system deals with:
e The communication model creation in the graphical modeling environment.
e The conversion between XCML and GCML and vice versa.
e The storing and loading of previously saved models.
e Some facilities to provide security and administrative tools for the CME system and
repository.
This system does not deal with:
e The basic software for model creation, the Eclipse Platform, which has to be
installed separately
o The creation of accounts for the different communication systems. This has to be
done by the user beforehand.
¢ The execution of models, this is done with the CVM.

11

1.3. Development Methodologies

The Unified Software Development Process model was chosen as the software process
to follow while developing the RRComSSys (see Figure 1). This process allows for the
encapsulation of both the functional and nonfunctional requirements into use cases. It
provides a blueprint of the different stages of the development process and it forces
traceability between them. The Software Requirement and Analysis Document
(SRAD) culminated the Analysis model and provided the direction and foundation
needed to develop the Design model. The architectural and design patterns were
chosen after careful analysis of the use cases (as well as the diagrams) provided by the
SRAD. The class and sequence diagrams in the Design model are an update of those
provided by the SRAD. USDP allows the developers to follow a model driven
approach. Each model in the USDP provides the foundation and outline for the
following model. In the validation/verification the latest model provides the validation
of the previous model. This evolutionary approach (rather than a revolutionary one) is

what makes every model in the USDP so important and effective.

12

Unified Software Development Process

System
Development

. _.-t7 Analysis model Process is use
specified by~ case driven!
7 realized by., Design model
5 S
S e [..—.___ distributed by *
-+ Deployment model All models are related
through traceability
.. Implemented by y dependencies.
e -1l Implementation
' madel
Regquirements verified by
captured as a
set of use cases. L v
* Test model

Since RRComSSys is a domain specific problem another development technique was
incorporated. The Model-Driven Software Development (MDSD) was chosen to specify the
domain of RRComSSys (see Figure 2). Following the approach of MDSD we defined the
Metamodel (see section 4.2) to be used by the EMF & GMF framework. The
transformations inside the User Communication Interface (see Chapter 4) from the creation
of the G-CML to the calls using the SkypeAPI display the facilities that MDSD provides for
the developer.

13

Application » DSL
Code of Application or Model
Reference Implementation Iy T
T Trans-
goessmsnssessnsannanss formations
anialyss separate E
: Individual
Code
Individual
Code
Generic
Eohematic Code Schematic Platform
Renetitive Repetitive »
Coda Code |

S
uses creates

Figure 2.1 The basic ideas behind Model-Driven Software Development.

Geml Metamodel

[N)
14

= # gcml
- Z Action
= szend =10
= doMotSend = 1
= start =2
" Capability
= TextFile =0
= BinaryFile = 1
= StreamFile = 2
= MNonStreamFile = 3

m

= AudioFile = 4
= VideoFile = 5
= AVFile =6

= Text=7

= LiveSiream =3
= LiveAudio =9
= LiveVideo = 10
= LiveAV = 11
= H Connection
O bandwidth : String
T connectionID : String
= H Device
o= deviceCapability : Capability
5 devicelD : String
= isLocal ; Boolean
O isVirtual : Boolean
5* toConnection : Connection
= H Form
o= mediumDataType : String
O action : Action
5 formMame : String
O suggestedApplication : Strin
= yoiceCommand : String
= H Goml
& connection : Connection

= platform: fresourcefcme model/Geml.ecore Figure 1 Graphical tree view of "acml ecore" from

Eclipse

= H Form

o= mediumDataType : 5tring

O action : Action

T formMame : String

= suggestedApplication : String
= yoiceCommand : String

= H Goml

o2 connection ; Connection
&2 medium : MainMedium

&2 form : MainForm

o person : Person

o2 isAttached : IsAttached
o2 device : Device

o2 childMedium : ChildMedium
2 childFarm : ChildFarm

= H IsAttached

5* toDevice @ Device
H Medium

O derivedFromBuiltinType : Capability

5 mediumMame : String
O suggestedApplication @ String
O woiceCommand : String
E Person
T personlD : String
5 personMame : String
5 personRaole : String
5* tolsattached : IsAttached
ChildForm - Form
5* toParentForm : Form
MainForm -= Form
= toConnection @ Connection
ChildMedium - Medium
5* toParentForm : Form
MainMedium - Medium
5* toConnection : Connection

m 0 00 00

1.4. Definitions, Acronyms, and Abbreviations

CME: Communication Modeling Environment. The system described in this document. The
CME allows a modeler to create graphical models of communication which can then be
transformed into XCML.

Metamodel: A model that describes the possible structure of models — in an abstract way, it
defines the constructs of a modeling language and their relationships, as well as the
constraints and rules — but not the concrete syntax of the language.

GUI: The user interface allows people to interact with the computer which have graphical
icons, visual indicators or special graphical elements representing the models and
functionalities of the Modeling environment for CVM.

EMF: Eclipse Modeling Framework is an Eclipse-based modeling framework and code
generation facility for building tools and other applications based on a structured data

model.

UML: UML (Unified Modeling Language) is a language used to visualize, specify, construct,

and document the artifacts of a software-intensive system.

Abstract Syntax: Specifies what the language structure looks like.

CML: Communication Modeling Language, a DSL to specify the Communication domain.

Concrete Syntax: Specifies what the parser of the language accepts.

CVM: Communication Virtual Machine

Domain: Bounded field of interest or knowledge

DSL: Domain Specific Language.

Formal Model: It is a sentence formulated in the DSL

GCML: Graphical CML. Communication Modeling Language represented as Graphs.

GEF: Graphical Editing Framework

GMF: Graphical Modeling Framework

MDA: Model Driven Architecture

MDSD: Model Driven Software Development

Meta Meta-Model: It is the meta-model of the meta-model

Meta-Model: Encompasses the abstract syntax and static semantic of a language.

NCB: Network Communication Broker

RCP: Eclipse Rich Client Platform. While the Eclipse platform is designed to serve as an

open tools platform, it is architected so that its components could be used to build just

about any client application. The minimal set of plug-ins needed to build a rich client

application is collectively known as the Rich Client Platform.

Taken from

http://wiki.eclipse.org/RCP_FAQ#What is the Eclipse Rich Client Platform.3F .

SE: Synthesis Engine

Self-Configuration: automatically configuring existing system components and integrating

new components

Self-Optimization: automatically tuning resources

17

http://wiki.eclipse.org/RCP_FAQ#What_is_the_Eclipse_Rich_Client_Platform.3F�

SRAD: Software Requirement and Analysis Document

Static Semantics: Determines the criteria for well-formation of a language

UCI: User Communication Interface.

USDP: Unified Software Development Process

CME: Communication Modeling Environment

XML: Extensible Markup Language

XCML: Communication Modeling Language represented in XML.

1.5. Overview of Document

Chapter 2 of the document, Current System, describes the existing system that provides a
similar functionality for CML modeling. This system doesn’t offer a transparent method of
conversion between GCML and XCML formats.

Chapter 3 of the document, Project Plan, identifies the milestones of the projects and
breaks it down in a number of subtasks. It also describes the hardware and software
requirements and enumerates the different roles of the team members.

Chapter 4, Proposed System, is centered on the functionality of the developed system. It
gives an overview, enumerates the functional and non-functional requirements and offers
various models describing the static and dynamic views of the system, among them,
Scenarios, Use Cases diagrams and Requirements analysis.

Chapter 5 consists Software Architecture and an overview of different subsystems like ME,
Modeling Transformation and Validation, Repository and Package diagram. The detailed
subsystem decomposition, also the software and hardware mapping and persistent data

management is presented here.

18

Chapter 6 introduces object Interactions which is the sequence diagrams , control objects
that is state-machines and detailed class design with class description.

Chapter 7 introduces with testing and presents a list of system test case, sub system tests
and unit tests. Chapter 8 consists of a glossary of terms, and Chapter 6 provides a Software
development agreement to be signed by the interested parts before the system goes into

development.

19

2.Current System

Currently there are many services that provide communication capabilities to users. But,
the majority does not offer automated sequence of services. If a developer attends to his
needs, he can implement this functionality. Consequently, if this user now needs something
else, it becomes very inefficient to constantly change the implementation.

The CVM accepts XCML models that can be developed manually by a knowledgeable
modeler. There are several prototypes of graphical modeling environments to obtain GCML
versions of models but they lack some of the functionalities required by our clients. A
complete Modeling Environment is unavailable at this time. There is no system capable of
loading, storing and displaying complete schemas. Currently there is not system capable of
transforming models in G-CML to schemas in X-CML. Our system will incorporate a

solution for all these deficiencies.

20

3.Project Plan

The following sections show the tasks required to organize and schedule the project's
Requirements and Analysis, Design Development and Implementation, and Testing.

Section 3.1, Project Organization, describes the assignment of roles during the project.
Section 3.2, Hardware and Software Requirements, provides a set of system requirements
for both the software used to develop the system and the deployment system to house the
software. Finally, Section 3.3, Work Breakdown, will identify a set of milestones and

deliverables required for the completion of the project.

3.1. Project Organization

The Project Organization section defines the roles for each individual in the project.
Deliverable 1:

Team Leader: Lazaro Pi.

System Manager: Jorge Jauregui.

Implementers: Marc Gauthier, Sandeep Varry.

Project Manager: Leandro Wong.
Document Editor: Manasa Bharadwa;.
Time Keeper: Roberto Espinosa.

Note Taker: Roberto Espinosa.

21

Deliverable 2:
Team Leader: Manasa Bharadwaj.
System Manager: Lazaro Pi.

Implementers: Leandro Wong, Marc Gauthier.

Project Manager: Robert Espinosa.
Document Editor: Sandeep Varry.
Object Designer: Leandro Wong.
Time Keeper: Jorge Jauregui.

Note Taker: Marc Gauthier.

Deliverable 3:
Team Leader: Sandeep Varry.
System Manager: Leandro Wong.

Implementers: Jorge Jauregui, Lazaro Pi, Leandro Wong.

Project Manager: Manasa Bharadwaj.
Document Editor: Jorge Jauregui.
Object Designer: Marc Gauthier.
Time Keeper: Manasa Bharadwaj.

Note Taker: Manasa Bharadwaj.

22

3.2. Hardware and Software Requirements
To develop the CME we have decided to use the Eclipse Modeling Framework (EMF) v2.3.
The following are the software requirements for EMF:

e JDK 5.0 or later

e Kclipse Europa v3.3.0 or later

o EMF v2.3 Plugin or later
The following are the system requirements for development:

e Computer with a 1.6 GHz or faster processor

e 384 MB of RAM or more (768 MB of RAM or more for Windows Vista)

e 2.2 GB of available hard-disk space

e 5400 RPM or faster hard drive

e 1024 x 768 or higher-resolution display
Any of the following operating systems:

e Windows Vista® (x86 & x64) - all editions except Starter Edition

e Windows® XP (x86 & x64) with Service Pack 2 or later - all editions except Starter

Edition
e Windows Server® 2003 (x86 & x64) with Service Pack 1 or later (all editions)
e Windows Server 2003 R2 (x86 and x64) or later (all editions)

The following are system requirements to execute CME application:
e Computer with a 1.0 GHz or faster processor
e 256 MB of RAM or more
e 50 MB of available hard-disk space
e 800 x 600 or higher-resolution display
e JDK 5.0 or later

The following software packages are utilized while documenting/developing the project:
e StarUML
e Microsoft Word
e Microsoft Project

e Kclipse Europa v3.3.0

23

3.3.

Work Breakdown

The following table shows each of the tasks related to this project and how they are
scheduled.

Task Milestone Task Name Finish | Predec.

1 No Analysis/Software Requirements 9/3/2008 10/6/2008 24 days

2 No Generate Use Cases 9/9/2008 9/15/2008 5 days

3 No Primary Project Schedule 9/3/2008 9/8/2008 4 days
Identify Hardware, Software

4 No Resources 9/16/2008 9/22/2008 2 5 days

5 Yes Review Use Cases 9/16/2008 9/16/2008 2 1 day

6 No Identify milestones 9/16/2008 9/17/2008 2,5 1.5 days

7 No Create Cost Analysis 9/17/2008 9/22/2008 5 4 days

8 No Obtain approvals to proceed 9/22/2008 9/22/2008 7 1 day
Create Object and Dynamic

9 No diagrams 9/16/2008 9/18/2008 5 2.5 days

10 Yes Create SRD deliverable 10/1/2008 10/2/2008 5 1.5 days

11 No Create Presentation 10/6/2008 10/6/2008 10 1 day

12 No Design 10/7/2008 11/3/2008 20 days

13 No Review software specifications 10/7/2008 10/10/2008 11 3.5 days

14 No Create Architectural Design 10/9/2008 10/15/2008 13 4 days

15 No Create Object Design 10/9/2008 10/23/2008 13 10 days

16 Yes Review Design with Team 10/23/2008 10/28/2008 15,14 3 days

17 No Obtain approval to proceed 10/28/2008 10/28/2008 16 0.5 days

18 Yes Create DD deliverable 11/3/2008 11/3/2008 17 0 days

22.5

19 No Implementation 10/28/2008 11/27/2008 days

20 No Review System / Object Design 10/28/2008 10/31/2008 16 3.5 days

21 Yes Implement Import module 10/28/2008 11/25/2008 16 20 days

22 Yes Implement Convert 10/28/2008 11/11/2008 16 10 days

23 No Unit Testing 10/31/2008 11/6/2008 16FS+3 4 days

21FS-

24 No Functional Testing 11/4/2008 11/27/2008 75% 17 days

25 No Development complete 11/27/2008 11/27/2008 24 0.5 days

26 No Final Deliverable 11/4/2008 12/1/2008 20 days
Develop Final Software

27 No documentation 11/4/2008 11/10/2008 12 5 days

28 No Review of Final Deliverable 11/11/2008 11/11/2008 27 0.5 days

29 No Final Presentation 11/28/2008 12/1/2008 19 2 days

24

3.4. Cost Estimate

The estimate is based on COCOMO 1II.

Work is breakdown based on the different

aspects of the software process. COCOMO II allows the user to estimate the cost based

on functions points. COCOMO II then converts the function points into “Lines of Codes”

and Person Months. A Complete estimate with a complete analysis of each phase is

provided in Appendix F.

Project Name:

Scale Factors:

Module Name
RISK

SRD

0.0
DD

0.0
IM

0.0
RE

0.0
TOTAL SLOC

0.0

0.0

0.0

SCHEDULE

25

CVM
PREC FLEX REEL TEAM PMAT
L N N N N
4,96 3.04 4 .24 3.29 4.68
NOM ACT
Module Effort Effort PROD
Size EAF DEV DEV
FP
23539 1.00 117.1 117.1 201.1
FP
6958 1.00 34 .6 34.6 201.1
FP
42294 1.00 210.4 210.4 201.1
FP
26040 1.00 179.2 179.2 201.1
108831 QOPTIMISTIC 362.7 301.86
MOST LIKELY 541.3 201.1
PESSIMISTIC 811.9 134.7
QPTIMISTIC MOST LIKELY PESSIMISTIC
24 .3 27.6

RATE

COST

100.0
11707

100.0
3461

100.0
21035

100.0
17825

36266

54128

81192

INST
COoSsT

Staff

4. Requirements of the System

This chapter first lists the functional and nonfunctional requirements of the system which
are detailed through the use of structured natural language narratives in the form of Use
Cases. It then presents some scenarios, object and sequence diagrams illustrating the key

functionalities of the CME system.
4.1. Functional and Non-Functional Requirements

4.1.1. For functionalities corresponding to creating the model

A) The system shall allow model creators to drag and drop objects to canvas and save model
to repository. (See use case DragObjectCanvas Appendix B)

Constraints:
* The system shall have at most 1 drag or drop failure per 100 drags or drops of objects.

* The created model shall be saved within 2 seconds.

B.)The system shall allow model creators to create edge between objects and save model to
repository. (See use case Create Edge between Objects in Appendix B)

Constraints:

* The system shall have at most 1 create edge failure per 100 creations of objects.

* The created model shall be saved within 2 seconds.

C) The system shall allow model creators to create Group Chat Model, TwoWay Voice
Communication Model and File Transfer Model and set attributes to the model. (See use
case Group Chat (Create), TwoWayVoice, FileTransfer in Appendix B).

Constraints:

* On the user interfaces, all the shapes must contain brief textual descriptions.

* The created model shall be saved within 2 seconds.

D) The systems shall allow model creators to create new Empty Model and Generic Model
(See use cases CreateEmptyModel and CreateGenericModel in Appendix B)
Constraints:

The created model shall be saved within 2 seconds.

26

If Modeler enters a name that already exists. The CME should warn the modeler that this

action will overwrite the exiting model.

E) The systems shall allow modeler to open existing GCML model (See use case
OpenExistingModel in Appendix B)
Constraints:

The model shall be displayed within 10seconds.

4.1.2. For functionalities corresponding to loading and storing the model

F) The system shall allow users to create a Model and store it in the repository which can
be used later. (See use case AddModelToRepository in Appendix B)

Constraints:

The Modeler will add the existing model to the repository structure and will save additional
metadata to describe the model.

The Modeler can enter a name that already exists. System should overwrite the existing
model with the same name.

G) The system shall allow users to import an XCML or GCML file into the CME by picking
the file on the File System (See wuse case ImportModelFromXCML and
ImportModel FromXCML in Appendix B)

Constraints:

If the file name to be imported already exists (GCML, XCML or both), the user will be

prompted to enter a different file name.

H) The system shall allow user to create a duplicate copy of the repository. (See use case
CreateMirrorBackupOfRepository in Appendix B)

Constrains:

Mean Time to Failure no more than: — 1 failure for every 160 hours of operation.

Should always be available to the administrator: -Down time of the CME fewer than 30

minutes every 80 hours of operation.

I) The system shall allow Sensitive attribute values to be encrypted in the repository file

(See use case EncryptSensitveData in Appendix B)

27

Constraints:
CME will take less than .005 seconds to encrypt sensitive data.
Should be always available to the administrator. Down time of the CME fewer than 30

minutes every 80 hours of operation

J) The system shall allow transformation of model from GCML to XCML (see use case
ConvertFromGCMLtoXCML, TransformObjectData and GenerateLayoutData in Appendix
B)

Constraints

4.1.3. For functionalities corresponding to Transforming and validating the model

K) The system shall allow transformation of model from GCML to XCML (see use case
ConvertFromGCMLtoXCML in Appendix B)

Constraints:

Must take less than 15 seconds for transformations.

System should notify the user of a failure (incorrect format) gracefully without aborting the

program.

L) The system shall transformation of model from XCML to GCML (see use case
ConvertFromXCMLtoGCML, in Appendix B)

Constraints:

Transformations must take less than 15 seconds

System should notify the user of a failure (incorrect format) gracefully without aborting the

program.

M) The System Shall , Transform Object Data and Generate Layout Data(See use cases ,
TransformObjectData and GenerateLayoutData in Appendix B)

Constrains:

Must take less than 0.45 second for object data

Mean Time to Failure no more than 1 failure for every 120 hours of operation is acceptable

28

System should notify the user of a failure (incorrect format) gracefully without aborting the

program

N) The system shall Calculate Shape and Size, Calculate Coordinates of objects(see use
cases CalculateShapeandSize, Calculate Coordinates in Appendix B)

Constraints:

Should take less than .25 second for calculations of size and shape.

Must take less than .50 second for calculation of coordinates.

System should notify the user of a failure (incorrect format) gracefully without aborting the

program

0) The system shall Check Overlap of objects (See use case CheckOverlap in Appendix B)
Constraints:

Should take less than .25 second to check overlap.

System should notify the user of a failure (incorrect format) gracefully without aborting the

program

P) The system shall allow validation of model. (See use cases ValidateModel in Appendix B)
Constraints:

Must take less than .50 seconds for validation.

System should notify the user of a failure (incorrect format) gracefully without aborting the

program

Q) The system shall Check model Schema and Check Semantic Rules(see use case
CheckModelSchema, and CheckSemanticRules in Appendix B)

Constraints:

Must take less than .50 seconds for validation.

System should notify the user of a failure (incorrect format) gracefully without aborting the

program

4.1.4. For functionalities corresponding to Security of System.

29

R) The system shall allow Users s securely log into and log out the system. (See use cases
LogIn and LogOut in Appendix B)

Constraints:

On the user interfaces, all controls that require input from the user must contain brief
textual descriptions of their purpose.

The login and logout process shall be completed within 2 seconds.

S) The system shall allow administrator to create account, change password, delete user
account and suspend user account (see use case in Appendix B)

Constraints:

User must be able to access the system within 3 seconds of pressing the Add User button or
Change password button.

User account should be deleted within 2 seconds of pressing delete user button.

The account should be suspended within 2 seconds of pressing suspend user button.

T) The system shall lock and wunlock running application (see use case
LockRunningApplication and UnlockApplication in Appendix B)

Constraints:

User must be able to exit the system within 2 seconds of pressing the OK button

Mean Time to Failure — 1 failure for every 160 hours of operation is acceptable.

A. The system shall allow Users s securely log into and log out the system. (See use cases
Log In and Log Out in Appendix B) Constraints:

* On the user interfaces, all controls that require input from the user must contain brief
textual descriptions of their purpose.

+ A help facility must also be provided. Furthermore, at least 75% of the testing panel of
users must agree that the help facility has the same visibility as other controls on the form.

* The login and logout process shall be completed within 2 seconds.

30

4.2. Use Case Diagrams

High level Use case Diagram (packages)

User

Administrator

Modeler

1]

Model Creation And Editing

System

l

1]

Security

Model Transformation

Figure 2 High level use case diagram

31

Hacker

Model Creation and Editing

Create New Empty Model

Model Creation and Editing B}

Create File Transfer Model
Drag Object to Canvas

=7
2
-

-

o
'

" .-* < <indude>>
Aeric

2

Open Existing GCML Model

"~ <<indude =

)

Create Group Chat Model

Create Edge between Objects

Create 2-Way Voice Connection Model

Add Model to Repository

Edit Model Metadata

Figure 3 Model creation and Editing

Print Model

32

Model Transformation

Transform Object Data

Model Transformati
e D”DW Import Model from GCML

<<indude>> ..-%

Import Model from XCHML

<<indude>> ; P

Hu-deler\ . g e

Calculate Shape and Size

Calculate Coordinates

Check Overlap

Convert Model from GCML to XCHML

e <<indude =
Check Semantic Rules

Validate Model J-------"-=

Check Model Schema

) < <indude == ,

Figure 4 - Model Transformation schema

33

Security

Security Ij

<<prevented by ==

< <security ==

< <misuse > >
Encrypt Sensitive Data

Read Sensitive Data in Repository

< <protect against>>

<<zextend==

< <security=>

< <security ==
Unlock Application

Lock Running Application

<<prevented by ==

<<protect against> >

g’«: <prevented by >

< <security ==
Logout

< <MISUSE = >
Unauthorized Use of Running Application

< <protect against=>

< <security ==
Change User Account Password

< <prevented by ==

ﬁ:protect againstz> >

< MisLSE * >
Access System with Stolen Credentials

User

< <security ==
Suspend User Account after n attempts

H << protect against> > <<prevented by>>

< Mmisuse ==
Access System after Many Login Attempts

Hacker

! c<indude==

<<prevented by ==

iy

< <security=>
Login

«<<protect against=> > T
c<extendss oo

< <MisUSE = >
Unauthorized Access

< <security ==
Create Authorized User Account

Administrator

<<prevented by ==

< <security ==
Create Mirror Backup

< <misuse >
Delete Data in Repository

< <protect against> >

< <security ==
Delete User Account

<<prevented by == \I
|/{::|:|r|:|tect againsts> =

< <MisUse >
Access System with Expired Credentials

Figure 5 Security

34

Use cases for Implemented Scenarios

Create Generic Model Create File Transfer Model Open Existing GCML Model

/ Convert Model from GCML to XCML

Convert Model from XCHML to GCML

Modeler .

<<indude>>=:

)

Import Model from XCHML
Edit Model Metadata Add Model to Repository Validate Model

Figure 6 Use cases for implemented scenarios

4.2.1. Use Case Descriptions

Explanations:
Actors: Modeler and Administrator. For misuse cases: Hacker
Use Case ID: The use case ID has been coded as follows:

Team + “” + SystemName +”_” + UseCaseLevel + ”_” + IncrementalNumericID + “ 7 +

UseCaseName

Example: T2_CME_SUB_01_CreateModel

This can be interpreted as a use case by Team 2 for the Communication Modeling
Environment system. This is a functional sub-use case, has numeric id 01, and relates to

the creation of a model.

Use Case Level Abbreviations:

HIGH = High Level Use Case

SYSEZ2E = System Level End to End Use Case

SUB = Functional Sub-use Case

36

4.3. Requirement Analysis.

The Requirements Analysis was partly performed by extracting requirements from
Researchers involved in the CVM project. System details discussed in the CVM meetings
were incorporated into the development of the UCM layer. Additional requirements were
obtained from documents and publications that were produced outside of class by the group
responsible for the CVM project. Examples of such documents are "CVM - A
Communication Virtual Machine" by Deng et al, "UCM State Machine", and "UCM Control
Script". Any assumptions were verified with the professor and the parties involved in the
CVM project

Also we obtained the background of the CVM from the latest version of CVM provided to us
by our clients CVM V1. Repeatedly the requirements were refined with our better
understanding and constant communication with our clients.

37

5. Software Architecture

Architectural patterns are used to help describe how the system is decomposed, the tasks to
be performed by the system's components, as well as the interrelations between them. This
section details the proposed software architectures for the CME; which are Model-View-
Controller (MVC) and Repository and Pipe and Filter as subordinate architectures. A
package diagram showing the major subsystems, an overview of each subsystem, reasons
for our choices of architecture, and metamodels for the DSL are among the subjects
contained in this section. This section of the document also provides a UML profile that
represents the architecture, details of the architecture to platform transformation and a

detailed description of each major subsystem in the system.

5.1. Overview

The system architecture is based in the MVC architecture pattern with two sub patterns:

the pipe and filter and the repository.

Modeling Environment: Model-View-Controller
The architecture of the system is MVC. This pattern accommodates perfectly to be run on

top of the Eclipse Rich Client Platform (RCP), which is our choice implementation. CML is
our representation of the communication domain and acts as our metamodels. There are
two different models based on this metamodels: Xeml and Geml. The “geml” package inside
the cme subsystem contains all the classes representing the Geml model.

The Geml model is directly manipulated through the modeling environment and therefore
acts as the model for the MVC implemented in the Eclipse platform. The classes to
accomplish this are located in the cme.diagram and cme.edit subsystems. Some of these
classes represent the different part needed to create the graphical view of the models while
others provide a set of controller objects to manipulate and edit the models (in several
categories, such as commands, editors, parsers, etc.). These controller objects depend on
the EMF, GEF, and GMF components and ultimately in the eclipse RCP to function. When
we present a high level view of these controllers we will refer to it as the CmeController.
There are two views of the Geml model: a graphical view (where the modeler can see shapes
and arrows representing the different entities and they can edit properties of those entities)

and a textual view (where the modeler can open the XML text directly. This textual view is

38

saved in the repository for future use and is divided in two parts: object model data (files
with .geml extension) and layout data (files with .geml_diagram extension). The Modeling
Environment (cme.diagram and cme.edit running on top of the Eclipse RCP) depends on the
Transformation subsystem and the Repository subsystem for some of its functionalities. A
separate Administrative facility contains all code needed to support administrative features

and security (called cme.admin).

Model Transformation and Validation: Pipe and Filter
The pipe and filter architecture is used in the UCI component to accomplish transformation

and validation of models. The transformation package depends on the Geml and the Xeml
object models (in order to produce models in both representations). The transformations are
organized as a series of filters or steps where the input of one step is the output of the
previous one. The client code provides the initial input and obtains the final output from
the pipeline. This standard way of implementing the transformation steps should allow us
to change the order of the filters, add new filters, and introduce a pause in the execution by
stopping in an intermediate step, when the requirements change. The client code is
virtually unaffected. Validation is done in a similar way although the set of filters is
different. The UCI package contains two Control classes as entry points to the services
provided: Transform and Validate. These classes initialize the appropriate pipeline,
executes the filters and returns the final result (if any is needed) back to the user.

Refer to Appendix B Use Case 10.2.1.9(Convert the model form GCML to XCML)

Use Case 10.2.1.10 (Convert model form XCML to GCML)

Use Case 10.2.1.19 (Validate Model)

Use Case 10.2.1.20 (Check Model Schema)

Use Case 10.2.1.21(Check Semantic Rule)

Repository
The system also uses a central repository for the models, the intermediate input and output

results of the pipeline, and application configuration information. The repository package,
containing a group of repository classes, controls the access to the repository and exposes an
interface to the rest of the application which makes it easier to change the actual repository
(database, text files, xml files, etc.) used with minimal effect on the rest of the application.

Refer to Appendix B Use Case 10.2.1.11 (Add Model to the Repository)

39

Package Diagram

Model - View - Controller B}

I

“<View=>
Eclipse RCP

1]

with companents from
GMF, EMF, and GEF

Updates

—

< <cme,xcml ==
¥emil

\
]

< <Model > >
CML

o

<<Cme.ud>>

ICI

1]

< <cme.ud.transform ==
Transform

< <ome, ud. validate = »
Validation

|se pipe-and-filter pattern b}

Figure 7 Package diagram

= =<gcml. diagram. *= >
GMF Contraller

<= Controller ==
CmeCantroller

1]

< <gcml, provider > =
EMF Controller

Manipulates

[

<<me.goml, * ==
Gl

/
g

=

< <repaository ==
Repositary

1]

<< cme.admin = >
Admin and Security

5.2. Subsystem Decomposition
CmeController (GMF controller and EMF Controller) is the control subsystem of the
Modeling Environment MVC. It manipulates Geml models, process requests from the

modeler and updates the views. It also accesses the repository to save persistent data.

Eclipse RCP provides the view in conjunction with EMF, GMF and GEF components and
acts as the user interface. This code is neither manually created nor generated but exists as
an extensible platform that the generated code can use.

UCI (Transformation and Validation) implements two way transformation of GCML and
XCML and validation of both types of models through a pipe and filter pattern. It also
accesses the repository to save persistent data. In future implementation it would provide

the interface to access the CVM.

Gceml object model is the realization of the CML metamodels as GCML.
Xcml object model is the realization of the CML metamodels as XCML.

Repository contains all logic to interact with the data store that holds all persistent data.
Admin and Security contains all code relevant to administrative and security functions. It

also accesses the repository.

5.3. Hardware and Software Mapping

All components depend on Java 1.6

CmeController (GMF controller and EMF Controller) runs on the local computer on the
Eclipse RCP (depend on EMF and GMF).

Eclipse RCP runs on the local computer (depend on EMF and GMF).

Gcml object model must be available wherever UCI runs and also for the Modeling
Environment.

UCI (Transformation and Validation) this component is independent of the Eclipse RCP so
it can either run on the local machine or an application server with minimal modifications.
Xcml object model must be available wherever UCI runs.

Repository does not depend on other components and can run locally, or an application

server with minimal modifications (it can further be adapted to access a database server).

41

Admin and Security contains all code relevant to administrative and security functions; it

runs on the local machine.

5.4. Persistent Data Management
The diagrams in this sections show table definitions for the main entities in the CME
system. Although they are shown as SQL tables the actual implementation of the
Repository is agnostic of the data store used. Other potions of store can be XML files and
text files. The implementation for this prototype uses XML files in a local repository on the

User’s file system.

Persistent Data for Geml

Form:
Table - dbo.Form | Summary

FormiD Medium_Data_... | Ackion Suggested_Ap... | FormMame YoiceCommand

1 Texk Send Java Forml Zall
AvFile DoMotSend Java Faormz Zall
AudioFile Send lava Farm3 Zall
StreamFile Skart Java Faormd Zall
Livesudio Send Java Farms Zall

k¥ ALESL ALEL ALLL AELE AELE

Figure 8 Persistent data for GCML, Form

Person:

Table - dbo.Person [Summary

Persan_ID Person_Mame Person_Fole
1 Lazaro Adrin
Leandro Iser
Manasa Iser
Jorge: ser
Sandeep Iser
L ALEL ALEL

Figure 9 Persistent Data for GCML, Person

42

Action:

Table - dbo.Action

Action_ID

1

4
2
3

k¥ ALEL

Figure 10 Action

Capability Type-
Table - dbo.CapabilityType
ConnectionTvp. ..

&3

Surmary

SkartyalueFile

Start
Skart

Capability Tywpe
Text

AvFile
AudioFile
Livesudio
SkreamFile

ALEL

Figure 11 CapabilityType

Device:

Table - dbo.Device | Summary

Figure 12 Devic

DevicelD

2
3
4

ALEL

DeviceCapability
1

Z

1

Z

ALLL

EndialueFile

Send
DoMakSe
Send
DoMakSe
ALEL

IsLocal
True
False
True
False
ARLL

rid

rid

Table - dbo.Capability Summary

Capabiltiy Typeyalues
TEXT

Ay

Audio

Live

Skream

LA L

IsWirtual
False
Trug
True
False
AELL

43

Conneckion

ALAL

User
Tahle - dbo.User* | Summary
serID serMarmne
1 Lazara
Lwiang
Manasa
Jorge
Sandeep

b ALEL

Figure 13 User

Password
Lazaro
Lwang
Manasa
Jorge
Sandeep
ALLL

44

FullMarme
Lazaro Pi

Leandrotiong

Manasa Bharad. ..

Jorge Jaureqgui
Sandeep Varry
AL

6.0bject Design

After the discussion of system decomposition in the software architecture step, the object
design for each subsystem is presented in this chapter focusing on both the static and

dynamic views.

Each subsystem is divided into classes. We give the minimum class diagram for the
subsystems in the overview subsection. The sequence diagrams show the interactions
between objects and actors. These actions are described in the appropriate use cases. The
statechart diagrams show dynamic behavior and state transitions of the main subsystems.
Finally, we give the detailed classes design and explain the purpose of each class. The

classes are grouped under packages representing the software architecture of the system.

45

6.1. Overview

Minimal Class Diagrams

CmeController

Parser and factory uses the policies B]

This is used to
Generate the shapes

: A
:
i We are implementing the command design pattern this allows
.. . :
Policies i for & more controlable use of the environment
oy factories
2
A z
] "
: ;
g Model .
s

] s

' J"

:

; = z K

1 -, ~

1 s A &

: P e i

H o b i preferences
i v

' - & . f’

1 -) il

i 7 iy

1 rd S o Jr

— H %
Commands
parsers | eememmmeen - 2]

The parser is used to parse the files while fransformation Iﬁ

There are other internal packages that are generated
by the edipse modelling environment

Figure 14 Minimal Class Diagral, CmeController

UCI and Repository

46

<=auxiliary ==
TransformParms

< <auxiliary ==
1 TransformFilter

< <auxiliary ==
GenerateGoemiLayoutFilter

< <auxiliary s>

SerializerFilter

Factories, Each factory creates
the appropiate filters as they are needed.

T A £
bog o = p ___
< <auxiliary = Ty <<aeater> <egeater> gl '
VT xberee v RTET AR S B <<rontral=> ;
G 1 TransformPipeline ;
L :
1 <<boundary>=> [__----- '
Transform < <control==
ValidationPipeline
< <interface == I TR "
siracitdies j =z<Interface > = <<Interface == o
Filter Pipefine &
ik P o
T & i
< <houndary == _“ _"
Validate : :
__‘ =<entity == 1 o+ ﬂ.. "_
< <guxiliary =3 Repository - | 5 ! :
: : <<entity = > ;)
CheckSemanticRulesFilter 1.4= Contains ke : '
Contai i [
3 i !
_" <=entity == i v
: ModelMetaData ; ;
' << auxiliary = i i
. CheckModelSchemaFilter L : :
S o s <<eaterr |
<<eate>= R i

Factory Pattern was used because it allows the factories (pipelines)
to easily create the appropiate filters that are needed.

UCI and repository

iagram,

| Class Di

inima

Figure 15 M

Comments

Briefly describe the purpose of having certain classes in certain subsystems

Geml
Modeling lj <<Control=> < <boundary > =
ToolBox = Shapelist i
+Availableshapes 1 1
< <boundary ==
ConnectionShape
< <boundary ==
IsAttachedShape
< <boundary ==
Shape
< <boundary ==
PersonShape
+personMame $
+personlD
+personFole
< <boundary ==
DeviceShape ;
ey " <<boundary ==
+isVirtual " | <<boundary>> 0
i CapabilityShape MediumShape
+type
has
1.
< <boundary ==
LiveAudioShape <<boundary=> <<boundary =
FileShape VideoShape

Figure 16 Minimal Class Diagral, GCML

48

< <ontrol==
Canvas

+5hapes: Shapelist
+Lines: LineList
+HHame

< <boundary ==
LinelList

Contai
l:l i =

<<houndary ==
Line

< <houndary ==
FormShape

+formMame
+suggestedApplication
+voiceCommand
+action

+type

Xeml

< <entity > > <<entity>> <<entity>>
G _I:} Cml {} ____________________ XCml
< <entity>> <<entity>> < <entity>> < <entity=>
Data Connection | | UserSchema [-— | Person
< <entity > > <<entity > > < <entity > > < <entity > >
Form lgee—— | Medium FormType IsAttached
< <entity=> < <entity>>
Device MediumType

Figure 17 Minimal Class Diagram XCML

49

6.2. State Machine

Model Creation Statechart

fSeIecting,l',l'Dragging\' Adding

[select] entry/EventReceived [Add] entry/EventReceived
. entryModelComplete do/addshape T
dofAddtaCanyvas exit/Shapefdded ;
exit/Error E

I_Exit,l'MDdEEENEd

ELSE [error]
IF[valid]Edit

[5ave]

Saving

[ModelComplete]

entry R eceiveMaodel
do/SaveModel
exit/Madelsaved

Editing

entry/EventReceived
- ---| dojEditModel
RS exit/MadelCompleted

StateMaching For control object of Madeling Environment Subsykemn, Ix—\}

Figure 18 Model Creation StateChart

The above figure is the state chart diagram representing the dynamic behavior for the

control part in the Modeling Environment subsystem (referred as CmeController). The

chart highlights the main functions of the Modeling Environment, loading, saving, and

editing models.

50

Model Transformation Statechart

The figure below corresponds to the model transformation functionalities (part of the UCI

subsystem). It can be seen that conversion between GCML and XCML is achieved using a

pipe and filter pattern. The pipelines for these functions are initialized through factory

methods. The UCI component implements validation using a similar approach.

Vs

Transforming
Convert/ ReceiveRequest convert/transforming entry/ConvertGCMLtoXCML| Store/storing Storing
‘7 entry/EventReceived entry/ConvertXCMLtoGCML entry/ReceiveModel
do/ConvertGCMLtoXCML | entry/Converted do/StoreModel
do/ConvertXCMLtoGCML e do/ConvertTo
N T - sl do/StoreModel
] o \C J
| e [Converted]

converting

entry/ConvertModel

Convert[toGeml]/Fetchdata

do/CreateXCML
exit/FileConverted

AN

<<PipeandFilter>>
AbstractFilter
ValidationPipeline
CheckModelSchemaFilter
CheckSemanticRulesFilter

DataFetched/create GCML

q

ConvertTo[XCML]/create xcml

Convert[toGeml]/Fetchdata

(fetchingDataForConversiorﬂ

GenerateGCMLlayoutFilter
SerializerFilter
Transformpipe
TransformFilter

entry/EventReceived
do/ReturnData

\exit/DataReturned

StateMachine for Control Object of Model Tranformation Subsystemlﬁ

Figure 19 Model Transformation Statechart

51

Repository Statechart

The next figure corresponds to the Repository subsystem. The main functionality of this
subsystem 1s to act a a central store for the models, their metadata. It also stores
information for the security and administration functions of the system. Main functions
allow retrieving and saving data into an abstracted data store. This will allow the

introduction of different data stores later (File Servers, Database Servers, etc).

4 .
ShowModel/dispal i (Displaying] creatno w
owModel/dispaly options .
‘* entry/EventReceived fipate/createmode] entry/EventReceived
do/DisplayOptions do,/t(;"\'/‘laadtel'\go‘jetl g
3 exit/ModelCreate
\do/DlspIayModeI) \
Fetch/checkrepository
fetched/display
Fetching
entry/EventReceived
do/LocateModel setvalues/setting
exit/ModelReturned
IF [Invalid]
Saving (Setting
@%’ entry/EventReceived entry/ModelCreated
do/SaveModel save/modelsaved do/Setvalues
exit/ModelSaved exit/ValuesSet

State Machine for Control Object of Repository Subsytem. 5

Figure 20 Repository Statechart

52

Administration and Security Statechart

The next figure corresponds to the Administration and Security subsystem. We are showing
the functions for authentication of users and how this relates to the available
functionalities and controls based on the type of user, wither administrator or modeler.
Other functions described in the identified use cases are not shown (for example, creation

and deletion of user accounts).

IF[< LIMIT] ELSE Blocked

(Autenticating entry/EventReceived
Authenticate/ do/BlockAccount
entry/AutenticationRequest exit/AccountBlocked
do/ValidateEnteredInfo T
/\exnt/Eanctlonl)
IF[Sucess]
h)) i Success/[User ; ;
[DisplayingAdminControls \ Success[Admn]J\ [User] kD'SplaVINQUsefcontm'ﬂ
[ReAuthentication |Success]
Request/executeRequest Request/executeRequest
ExecuteRequest
entry/RequestReceived \A
ReAuthenticate/Authenticating do/ExecuteRequest U
do/ReAutenticate
\exm/ReturnResuIt)

Figure 21 Administration and Security Statechart

53

6.3. Object Interaction (Sequence Diagrams)

6.3.1. Open Exiting GCML Model

<<boundary>>
: ModelingWindow

<<control>>
: CmeController

: Modeler
1 : click(Open)() 2 : showDialog(OpenFile)() »___
<<boundary>>
: OpenFileWindow
<<create>>
3 : show()
5 4
6 : enterModelName{name)() <<entity>>
fileTransfer : GCml
7 : click(Open)() |8 : loadModel("File Transfer” <<create>>
>|:J 9 : getModel()
>_—‘
10
<<control>>
|: 11 : Canvas
<<destroy>>
12 IoadModeIInCanvaszr‘
13
15 14

Figure 22 Sequence Diagram , open geml

54

55

6.3.2. Create File Transfer Model

56

< <houndary ==
1 Modeling'Window

oyt i et i e i

57

ta . createGaC ML)

; < <houndary == < <rontrol ==
i i ShapeList i Canvas
: Modeler : T T

' 11 CreateMewMadel : : :

: reatemewMadel() i 21 Createl) | :

i ; =

i <acreate>>

: 3 Createl)

S R SRR D e S o e :} """""""""" g P B T e e T L

! S 1 setMame) ! . ; :

: : - 6 1 sethlamed) : S

E rame = "File Transfer" |\—"'—, <<conkrol== , =

1 ' : ToolBox : '
loop List of Meeded Shapes : ; I ; ;

i) ' & pickshape() 9 ¢ drapShape() ;

71 dragFromToolBox ToCanya i

E |—_L|4 Zecreate =

' 10 : addshapel) 2

: : 11 : selectshape(mii) : % .

E 1| <<boundary> > -

: v | m MediumShape :

i i 3 I 13 ;

' 15 ; setMediumTypel TextFile) : 14 : :
Iucilp List of Lines Meeded) : i : i

16 : createlineBweenshapes) ‘ .

E 18 ¢ writeGCMLE) 17 ¢ wiribeGCML() ;

= entity >

: fil=Transfer @ GCml :

: - T =reate s

:,,E:: _____________________

Shapes are;
pl:PersonShape
p2:PersonShape
d1:Deviceshape
dz:Deviceshape
ial:IsAtkachedshape
iaz:IsAtkachedshape
i Mediumshape
C:Zonnectionshape
F1:FileShape
f2:FileShape

Lines are of bype
Lineshape and
conneck 2 Shapes as
Follows:

pl - ial: LineShape
pZ - iaZ: LineShape
ial - d1: LineShape
iaz - d2: Lineshape
di - c: Lineshape
dz - ¢ Lineshape
m - C: LineShape
dl - f1: LineShape
dz - F2: LineShape

[

Figure 23 Sequence Diagram, Create File Transfer Model

6.3.3. Convert Model from GCML to XCML

< <houndary = = < <conkrol> < enkity > =
: ModelingdWindow : ModelMetadats m ¢ GCril
: Modeler : : :
Ry cIlckCnnvertGCMLtDXCML{}.: ; 2 ¢ kokiCml{) ; 31 getMadell) : :
| < <entity ==
S Y | chat : ¥Crl
i : 4 ; ;
i ; <<control== ; i
i : : ModelConverter | I
] | 5 takCml) ! ; i
E : A writeb&:ml(} :
: : B e LA
: = o e -
i y 8 ; ! :
E - ' <<entity>= [
l : s Repositary |
E E 9 saverCMLModel) i ;
T CThre T :
G R T S e e oas 11 : 10
: 12]

Figure 24 Sequence Diagram, Convert GCML to XCML

58

L Giml

<<enkity = >
chat @ ®Cml

<aenkbity >
i

i

1 CreakeiEom

< <control==
! ModelMetadata

J
i
s
,
| n 5 _
1wy = =
Lt == I ST PR T T e e e ﬂu IIIIIIIIIIIIIIIIIII
= o
v | @@ i Fy . = " ;
Vvl | g ‘ ‘ T ‘
= o o v ! nE !
= ; 2 " ! A0 ;
] } = ' ' =i '
5 ! = : " e B b b
A PR =l) e e
o — i)
AR 2 I |t et Bl i
) [} ' o ' W= . e i = i} !
] ' = =) = =2 o " D = = e
! e 0 R = e =5 lin Lo : 5 = =
; 5 | o ' o 15 R = '
1 1 i 1
" gl ¢ [5| =] g iwE| i 1.
i = 1 =1 - 1 o —im 1 o e 1
'] 1 w ! m [1 b J
! b i) i (1] 'om h = ;
i o I = i] H i i H
H (5] 1 (] 1 e 1 F 1 u 1
1 = Y n [- oM 1 =t 1
[Ty} [T — —

< <houndary ==
Maodeling'Window

21 Frl:umX-:mITDGI:mIl:III I
S
alt {
<
alt Zlse
e
=
[

6.3.4. Convert Model from XCML to GCML

20

59

Figure 25 Sequence Diagram, Convert XCML to GCML

6.3.5. Import Model from XCML

60

< =houndary=>
: Modeling'window

X

<= conktral ==
: ModelMetadata

¢ Modeler

<<control=>

L i_anvas

y Gl

<<enkity ==

fileTransfer

» readGonl

11
1z

Z 1 showDialogl QpenFilelil)

=<creates»

< <houndary=>

CpenFilewwindow
—el}

6 : enterModelMameiname)l)

e it

13

14

15

61

Figure 26 Sequence Diagram, Import form XCML

6.3.6. Add Model to Repository

< <houndary s = < <contral = x < ZEnkity =
: Modelingindaw : ModelMetadata : Repository

! Modeler

1 i: l:|il:kl:MDdE|Sﬁ|dminiStratiDn.::II::l: 2 shDwDialng{Mndels.ﬁ.dministratiu:uni{} E

U < <houndary ==
: ModelAdmin'Window

d
---------------------- 2 4

5 1
& 1 click{AddMadelEntry))

<aentity =
m : ModelEntry

Z<oreate=> o

.i3 : set'-.-'alues{namejdescriptiunjpathj...H} ' 14

__________________________________ D R DIGEEEEEEE L bbb
:E: 18 5 17 : 19 :
. 19 : clickiSave)() - . 20 creakeGCML)
E u 21 : saveEntry(m)i)
e 5 e T]
: E‘E: ___________________ 4 1 1
LR e e e PP P P - ' : :
: 24 : 2 ! : :

Figure 27 Sequence diagram, Add Model to Repository

62

6.3.7. Edit Model Metadata

< <houndary ==
: Modeling'Window

: ModelMetadata

i Maodeler

= <rconkral==

1 ' n:Iin:I-:J{M::ldelsndministratinn.:}{:q 21 shclWDialu:u;{Mndels.ﬂ.dministratiuni{]l '

< <hboundary ==
i MaodelAdminiindow

|:I|< 31 show)

< <entiby ==
' Repositary

< <entity ==
m : ModelEnkry

—
—

17

8 1 seleck)

: 1 -
N 13 [I 4. set‘-.-'alues{]l_i
A 6 e 15 T
.._i 13 P_EEIII : acceptcharées{}
.'_: 22 csaucioiy I 231 saveEn;;y{m}{}
R L

Figure 28 Sequence Diagram, Edit model Metadata

63

6.3.8. Validate Model

< <entiby ==
RulesList

1
1
FL =
M~ B "
LA 1
e _
L
e | | SRR T e R T | | R IR TR IS O) g B e e e e
= & '
= 1 [
1 -L
e o . _ ~ 0
=) ! Ao
M !)
. : " =05
1 — —
o) o || MR - (I L Froal| Rl e el r-pbJfrmmmme
[~ !] i T i
......_...n_ ! T i i 1 W 1
.r..._.lm " — 1) 1 o i
1 m ! mun. "_u?..].,. 1
P
A N = Bl & :
— e —=
2 1 8| i aE =l iEiE =1 M
| ! o _ s [ie} !
1l 3 = 1 = o i = e 1
- I jus) ! (] = [} I
= | = [U5 i =] []
] T 3 ; T i m b e
m " g} 1 |m ") o 1
2 i 1 — 1
i . = g s
= _ D pR "
Mo m : i = I [} i
AR : o TR _
O 1 1 W ; o 1
] L N W S U T L —
O m
[
v o -
s g =
1) L
- [T
: <
[1a]
=]
= &
>
=
MBS 2 3
.__._pnm ol T
= C
g =
£ e T R S
2@ _
078 = :
W z]
W =] |
M 1
i 1
l—-.la‘ 1
-+
=2 P
m 1
= 1
1
¥ _
_ 1
| (=] 1
T - 1
K] —

Figure 29 Sequence Diagram, Validate Model

64

6.4. Detailed Class Design

Design Patterns Used

Singleton Pattern

The Singleton Pattern was used in our application to manage the creation of various
classes, such as the Repository class and the current logged in user (which initialized when
calling the login method). Any calls to these classes should be done to the same instance;
that way the values of settings (such as Repository paths and user rights) are preserved
through the entire application.

Lazy initialization was also used on those classes to postpone their creation until they were
actually needed.

Factory Method Pattern

The Pipeline classes of the UCI (Validate and Transform) component uses private
constructors and factory methods to control access to the pipeline initialization; this allows
flexibility in changing the order, code extensions, and behaviors of the filters (this include
suspend the execution to be resumed later, etc.), and also the way they are read (from
“.config” file, from code, or from central Database) without affecting the client code that
needs to execute the Pipeline.

Adapter Pattern

Since there are 2 variations of CML (Geml and Xeml), the UCI package acts as an adapter
between the CVM which only understands Xeml and the Modeling Environment which only
understands Geml. Furthermore, the use of CML isolates the client applications from the
underlying communication API’s (whichever they may be).

Observer Pattern and Command Pattern

This pattern is used in the CmeController to listen to events from the modeler. Many of the
functions to edit the Geml model are implemented as command classes in the cme.diagram
project (for example, the PersonCreateCommand class).

Class Descriptions

CmeController (see Appendix C)

Command package: Encapsulates the user requests in the modeling environment.

Factory package: It manages the creation of the shapes in the modeling environment. Each
shape is defined in the CML subsystem and accessed through the repository.

Parser package: Is use to parse the information from each shapes.

Repository (see Appendix C)

ModelMetaData: Meta Data representation of CVM.

User: Contains the user information.

Repository: It implements Singleton. It contains a collection of Users and the MetaData.

UCI Engine (see Appendix C)
Transform: It converts a file from Xcml to Geml or viceversa.

65

e Precondition: Valideml(Afile) = True.
o Postcondition: fromXcmlToGeml = Geml file
o Postcondition: fromGemlToXceml = Xcml file
Validation: It performs the validation to the files being uploaded. Two main filters are
CheckModelSchemaPFilter and CheckSemanticRulesFilter.
e Precondition: Valideml(Afile) = True.
e Postcondition: ValidSemantic(Afile) = True.
e Postcondition: ValidModel (Afile) = True.
Pipeline: Represents the Transformations as a linear pipeline where all the steps are
executed in order and the input of one step is the output of the previous step. The last
output is returned to the client that called the execute method.
TransformPipeline: It inherits from pipeline. It does the transformation by applying the
corresponding filters to each xml tag in the file.
ValidationPipeline: It inherits from pipeline. It performs the validation by selecting the
appropiate filter to each xml tag in a Pipe & Filter behavior.
Filter: Represents one step in the pipeline of transformations. Interface
AbstractFilter: A generic implementation of the Filter Interface. The Transform and
Validation filters inherit from this class.
TransformFilter: It inherits from Abstract Filters. Use by the Transform pipeline.
Serializer Filter: It inherits from Abstract Filters. Use by the Transform pipeline.
GenerateGemlLayoutFilter: It inherits from Abstract Filters. Use by the Transform
pipeline when transforming from Xeml to Geml.
CheckModelSchemakFilter: It inherits from Abstract Filters. Use by the Validation pipeline.
It verifies the association rules (MetaData) between shapes.
CheckSemanticRulesFilter: It inherits from Abstract Filters. Use by the Validation
pipeline. It verifies semantic rules in the diagram.
TransformParms: Parameters to pass to the Transform method.
CodeExtension: All code extensions passed to the Transform must implement this Interface.

CML Model

Person:A person participating in the communication.

LocalPerson : Person: The local person; it can be only one per application.
RemotePerson : Person:A remote person; there can be more than one.

Medium: The medium to exchange in this connection.

File: Medium: A File to be sent through the connection used to create chat connections.
TextStream: Medium: used to create chat connections.

VoiceStream: Medium: used to create voice calls.

Connection: Represents the connection between 2 or more devices.

Device: Represents the Device used by a person to connect to another.

IsAttached: A link between persons and devices.

66

7.Testing Process

Testing process cover a detailed testing of the system at various levels like system level,
sub system level and also unit level. The test cases presented in the systems test cases test
the implemented use cases which test the basic functionality of the system and the test
cases are divided into two sunny day and one rainy day for each of the use cases. The unit
test cases are implemented in the Junit.

7.1. System Tests.
Test Cases for Login Log out (Security Use Case) :

Sunny day Scenario : The Jjauregui a valid user logs into the system

Test ID TCS_1.1 Login to the System

Purpose To test if a user can successfully log on to the system. The user
cannot view the modeling environment till he enters a valid user
name and password.

Preconditions Jjauregui is registered into the system; If Jjauregui is admin then he
has all the accesses privileges. If the user is a normal user, admin
has already assigned the accesses privileges.

Input e Jjauregui (administrator) goes to the Login User Screen

e Jjauregui enters the Username “jjauregui” and password
“superclubs”.

e Jjauregui hits the “Enter” Button.

Expected Output | The Modeling Environment is launched.

67

Sunny Day Scenario 2 : The userLi1, valid user logs into the system

Test ID TCS_1.2(Login to the System)
Purpose To test if a user can login to the system.
Preconditions L1 is previously added to the system by the admin and has
appropriate accesses privileges.
Input e L1 goes to the Login Screen
e L1 enters the information User Name “l11” and Password
“repository”
e L1 hits the “Enter” button
Expected Output | The Modeling Environment is launched.

Rainy Day : The user tries to log in with valid user Name and invalid password

Test ID TCS_1.3(Login to the System)

Purpose To test if a user can login to the system to the system
Preconditions L2 who is not added by the admin, tries to log in to the system.
Input e L2 goes to the Login Screen

e L2 enters the information User Name “L.1” and Password ”J1”

e L2 hits the “Enter” button

Expected Output

The system indicates to the User an Error Message “Invalid User
Name or Password , Please Try again”

68

Test Case for Opening an Existing GCML Model

Sunny Day : The User selects the existing model from the repository. The model comes up
on the canvas.

Test ID TCS_2.1(Open an existing GCML model)

Purpose To test if a user “LL1” can open an existing GCML model from
the repository.

Preconditions The user “LL1” is logged into the application. The system has
identified the user to be a valid User.

Input e L1 clicks File -> Open and

e Browses for the GCML file from
“c:/lcme/Example/GCML1.gecml_diagram”(relative path)

e L1 clicks on “Open”.

Expected Output | The GCML1.gcml_diagram is displayed on the canvas

69

Sunny day 2 : The User tries to open a model when another model is already open and is
being display on the Canvas.

Test ID TCS_2.2(Open an existing GCML model when another model is
open already)

Purpose To test if L1 who is already logged into the system, can open
another valid model present in the repository when another
model is already open on the canvas

Preconditions The user (“L1”) is already logged on to the system.

Input e L1 click File -> Open and

e Browses for the GCML file from
“c!/../lcme/Example/GCML2.gcml_diagram”(relative
path) .

e L1 clicks on “Open”.

Expected Output | A new tab is opened and the new model GCML2.gcml_diagram
is displayed on the separate tab.

Rainy Day Scenario: The user tries to open a model that has been opened or edited in
another modeling environment, hence no longer has an extension of .GCML

Test ID TCS_2.3(Open an GCML model that no longer complies with
the system)

Purpose To test if L1 can open an invalid GCML .

Preconditions The user (“L1”) is already logged on to the system.

Input o L1 click File -> Open and

Enters the following path

e “c!/./cme/Example/GCMLX.cml”(relative path) .

L1 clicks on “Open”.

Expected Output | An error message is displayed “There is no editor registered for
the file: c!//cme/Example/GCMLX.cml.

70

Test case to convert the model from the GCML to XCML.

Test ID

TCS_3.1(Convert the model form the GCML to XCML) (Sunny
Day 1)

Purpose

To test if a user can fetch the existing XCML from repository
when the XCML already exists in the Repository.

Preconditions

The user(“L1”) is already logged on to the system. The GCML
and its corresponding XCML already exist in the repository.

Input

e L1 clicks on Model-> GCML to XCML
e L1 clicks on Browse

e Browses for “ci/../cme/Example/GCML1.gcml_diagram”
present in the repository

e L1 browses for “ci/../cme /Example/GCML1.gcml”

o L1 browses for the destination path to store the XCML
“ct/../cme /Example/XCML1.xcml

e L1 clicks on “Save”.

e The XCML already exists in the repository

Expected Output

“Transformation Complete”

71

Test ID TCS_3.2(Convert the model form the GCML to XCML)(sunny
day 2)

Purpose To test if a user can convert the model from the GCML to
XCML

Preconditions The user “L11” is already logged on to the system. The XCML
does not exist in the repository.

Input e L1 clicks on Model-> GCML to XCML

e L1 clicks on Browse

e Browses for “ci/../cme/Example/GCMLI1.gcml_diagram”
present in the repository

e L1 browses for “ci/../cme /Example/GCML1.gcml”
e L1 browses for the destination path to store the XCML
“ct/../lcme /Example/XCML1.xcml

L1 clicks on “Save”.

Expected Output

The XCML file is created and saved on to the repository and
popup “Transformation Complete”.

Test ID TCS_3.3(Convert the model form the GCML to XCML)

Purpose To test if a L1 can convert the model from the GCML to XCML

Preconditions e The user “L1” is already logged on to the system. The
XCML does not exist in the repository.

Input e L1 clicks on Model-> GCML to XCML

e L1 clicks on Browse

e Browses for “ci/../cme/Example/GCML1.gcml_diagram”
present in the repository

e L1 browses for “ci/../cme /Example/GCML1.gcml”

e L1 Clicks on “Save”

72

Expected Output | Error “Please select the path to store the XCML file”

Test case for Edit Model Meta Data

Sunny Day: The user tries to edit the model metadata that is already present in the

repository
Test ID TCS_4.1(Edit model meta Data)
Purpose To test if a user can edit the model meta data.
Preconditions e The user L1 is already logged on to the system.
e There are only a few meta data properties that can be
edited by L1.
e The remaining are set not to change (protected
properties) for the given domain.
Input e L1 browses for model (GCML) present in the repository.
e L1 clicks on Model Administration
e L1 selects “EditMetaData”.
e L1 changes the ‘audio’ property of the Device object.
Expected Output | The model has a new audio property.

Sunny Day 2: The user tries to edit the model metadata that is already present in the

repository

Test ID TCS_4.2(Edit model meta Data)

Purpose To test if a user can edit the model meta data.

Preconditions The user(“L1”) is already logged on to the system. There are
only a few meta data properties that can be edited by the user.

73

The remaining are set not to change (protected) for the given
domain.

Input

e L1 browses for model (GCML) present in the repository.
e L1 clicks on Model Administration
e L1 selects “EditMetaData”.

e L1 changes the capability of the Device object.

Expected Output

The model has a new capability

Rainy Day: The user tries to edit the model metadata which is protected

Test ID TCS_4.3(Edit model meta Data)

Purpose To test the user should not be able to edit the model meta data
that is protected.

Preconditions The user(“L1”) is already logged on to the system. There are
only a few meta data properties that can be edited by the user.
The remaining are assumed not to change in the given domain.

Input e L1 browses for model (GCML) present in the repository.

e L1 clicks on Model Administration
e L1 selects “EditMetaData”.

e L1 tries to delete the path, that gives the file’s location

Expected Output

An error message is popped up, “ The path cannot be left
blank, Please enter the appropriate location”

74

Test cases to convert from XCML to GCML

Sunny day 1: To convert the GCML model to XCML that is already present in the
repository.

Test ID TCS_5.1(Convert the model form the XCML to GCML)(sunny
day 1)
Purpose To test if a user can fetch the existing GCML from repository

when the GCML already exists in the Repository.

Preconditions The user(“L.1 ”) is already logged on to the system. The XCML
and its corresponding GCML file “ GCML3.geml_diagram”
already exist in the repository.

Input o The user “L.1”, click on File
e “L1” clicks on “Open”

e The user browses for the XCML form
“c/../cme/Example/xcml1.xcml

e The user browses for the GCML diagram path
“c/../lcme/Example/GCML/Gceml1.geml_diagram

e The user browses for the GCML “c!/../cme/Example/
GCML/Gemll.geml”

e L1 selects on “convertXXCMLToGCML”.

Expected Output | The GCML file GCMLl.geml and the diagram
GCML1.geml_diagram is fetched from the repository

Note: Since the XCML file from Team 1 has has fewer
attributes than required when compared with the GCML’s
requirement, we get some errors during the conversion of

Team1’s XCML to GCML

75

Test ID TCS_5.2(Convert the model form the XCML to GCML)(sunny
day 2)

Purpose To test if a user can convert the model from the XCML to
GCML

Preconditions The user(“L.1”) is already logged on to the system. The GCML
does not exist in the repository.

Input e The user “L.1”, click on File

o “L1” clicks on “Open”

e The user browses for the XCML form
“ct/../cme/Example/xcmll.xeml

e The user browses for the GCML diagram path
“c!/../lceme/Example/GCML/Gemll.geml_diagram

o The user browses for the GCML “c!/../cme/Example/
GCML/Geml1.geml”

e L1 selects on “convertXCMLToGCML”.

e The file is converted

Expected Output

The GCML file GCML1l.geml and the diagram file
GCML1.geml_diagram is stored in the location chosen by L1

Note: Since the XCML file from Team 1 has has fewer
attributes than required when compared with the GCML’s
requirement, we get some errors during the conversion of

Team1’s XCML to GCML

76

Test ID TCS_5.3(Convert the model form the XCML to GCML)(rainy
day)

Purpose To test if a user can convert the model from the XCML to
GCML

Preconditions The user(“L.1”) is already logged on to the system. The GCML
does not exist in the repository.

Input e The user “L.1”, click on File

o “L1” clicks on “Open”

e The user browses for the XCML form
“ct/../cme/Example/xcmll.xeml

e The user browses for the GCML diagram path
“c!/../lceme/Example/GCML/Gemll.geml_diagram

e L1 selects on “convertXCMLToGCML”.

e The file is converted

Expected Output

Error “Please Select the path to store the GCML diagram”Note:
Since the XCML file from Team 1 has has fewer attributes
than required when compared with the GCML’s requirement,

we get some errors during the conversion of Team1’s XCML to
GCML

77

Test case to validate a model

Test ID

TCS_6.1(ValidateModel)

Purpose

To validate a GCML model present on canvas

Preconditions

User L1 is already logged into the system with the valid
user name and password

L1 clicks on the File
L1 selects Open
L1 browses for the GCML file

Opens an already existing GCML file
GCML1.gcml_diagram

Input

Complete Model GCML1.gecml_diagram is opened on the
Canvas

Expected Output

No node has a red cross on it

78

Test ID

TCS_6.2 (ValidateModel)

Purpose

To validate a GCML model which is Created

Preconditions

User L1 is logged into the system with the valid userid and
password.

L1 drags the person box on to the canvas, enters the person id
= Lazaro, person name = “Lazaro”, person role = “user”

L1 drags Isattached on to the canvas and links person to Is
attached with PersonTolsAttached link.

L1 drags device box to the canvas, and enters Device Capability
="Audio”, IsLocal ="True “ IsVirtual="True”

L1 drags the link IsAttachedToDevice to attach the device and
IsAttached

L1 drags Connection on to the canvas, connects the Device and
the Connection with the DeviceToConnection link

L1 repeats the steps 1 to 5 for person 2 with a different person
credentials.iname=Leandro, role=user,id = leandro},Device
Capability = audio, Islocal=false, Isvirtual=true.

L1 clicks on Diagram - >selects validate.

Input

Model is created and is on the ME

Expected Output

No red cross are seen on the model

79

Test ID

TCS_6.3 (ValidateModel)

Purpose

To validate a GCML model present on canvas

Preconditions

User L1 is logged into the system with the valid userid and
password.

L1 drags the person box on to the canvas, enters the person id
= Lazaro, person name = “’, person role = “user”

L1 drags Isattached on to the canvas and links person to Is
attached with PersonTolsAttached link.

L1 drags device box to the canvas, and enters Device Capability
="Audio”, IsLocal ="True “ IsVirtual="True”

L1 drags Connection on to the canvas, connects the Device and
the Connection with the DeviceToConnection link

L1 repeats the steps 1 to 5 for person 2 with a different person
credentials

Input

Incomplete Complete Model drawn on the canvas

Expected Output

Red cross is seen on Person with Personld = “Lazaro”

80

Test cases to add model to repository.

Test ID TCS_7.1 (Add model to repository)(sunny day 1)
Purpose To test the addition of model to Repository
Preconditions e L1 has already logged into the system.
e L1 draws a model using steps in preconditions of
TCS_6.1.
Input o L1 clicks on Model -> save to repository
e L1 enters the GCML5.gecml as the file name
Expected Output | GCML5.gcml is saved in repository.

Message “Model Saved”

81

Test ID TCS_7.2 (Add Model to repository)(sunny day 2)
Purpose To test addition of a model with pre-existing name in
Repository
Preconditions e L1 has already logged into the system.
e L1 draws a model using steps in preconditions of
TCS_6.1.
e Repository contains a model named GCML5.geml
Input e L1 clicks on Model -> save to repository

L1 enters the GCML5.geml as the file name

L1 clicks yes when prompted.

Expected Output

DialogMsg ' Do you want to overwrite'. The new model is saved.

Test ID TCS_7.3 (Add model to repository)(rainy day)
Purpose Adding incomplete model to the repository.
Preconditions The user ‘L1’ is already logged into the system.

e L1 clicks file ->open and browses for “ The user browses
for the GCML file
[../lcme/lexample/GCML_incomplete.gcml_diagram

Input e L1 clicks on Model - >Save model to repository.

Expected Output

The system displays a message: “Invalid file”.

The model is not saved in the repository.

82

7.2. Sub-System Tests.

Subsystem test cases for package cme.uci

Test ID SST_1.1(Convert the model form the GCML to XCML)

Purpose To test the transformation package correctly carries out the
functionality

Preconditions None.

Input ¢ Run Transform.Java(String args[]):

0 Args[0]="UseCorrectFolder” ;
0 Args[1]="-option(fromGemltoXcml)” ;

0 Args[2] = “GemlSample.geml”s

Expected Output

There is a file out.xcml with the correct transformed model.

83

This is verified by using it as the input for the next test case.

Test ID

SST 1.2(Convert the model form the XCML to GCML)

84

Purpose To test the transformation package correctly carries out the
functionality

Preconditions None.

Input ¢ Run Transform.Java(String args[]):

0 Args[0]="UseCorrectFolder” ;
0 Args[1]="-option(fromXcmltoGeml)” ;

0 Args[2] = “xcmlSample.xcml”;

Expected Output

There is a file out.gcml with the correct transformed model.

This 1s verified by using it as the input for the next test case.

85

7.3. Unit Tests.

The unit test cases have been tested using junit. These test cases are method of testing that verifies the
individual units of source code are working properly. We have run the test and all have passed and the
results screen shot is attached below.

Test ID ut_1.1

Code /* (non-Javadoc)

* @see junit.framework.test 01

* The xcml contains one schema, the schema contains
three people

*

*/
public void test_01() throws Exception
{
int expected = 3;
asserteEquals(expected,
xcml .getUserSchema() .
getPerson().size());
}
Result e Pass

86

Test ID

UT_1.2

Code /* (non-Javadoc)
* @see junit.framework.test 02
* the xcml contains one schema, the schema contains
three devices
*/
public void test 02() throws Exception
{
int expected = 3;
assertEquals(expected,
xcml .getUserSchema() .
getConnection() .get(0).
getDevice().size());
}
Result e Pass
Test ID uT_1.3
Code /* (non-Javadoc)
* @see junit.framework.test 03
* the xcml contains one schema, the schema contains
the first person
* has person name = Dr. Wong
* personld = 023
*/
public void test_03() throws Exception
{
String expectedName = "'Dr. Wong";
String expectedld = ""'023";
assertEquals(expectedName,
xcml .getUserSchema() .
getPerson().get(0).
getPersonName());
assertEquals(expectedlid,
xcml .getUserSchema() .
getPerson().get(0).
getPersonlID());
}
Result e Pass

87

Test ID

UT 1.4

Code /* the xcml contains one schema, the schema contains the
first person
* has person name = Dr. Wong
* personld = 023
*/
public void test 04() throws Exception
{
String expectedName = "Dr. Pi";
String expectedld = "'041";
asserteEquals(expectedName,
xcml .getUserSchema() .-
getPerson().get(1).
getPersonName());
assertEquals(expectedlid,
xcml .getUserSchema() .
getPerson().get(1).
getPersonlID());
}
Result e Pass
Test ID UT_1.5
Code /*The xcml contains one connection, with ID =
‘*connectionl”
*
*/
public void test 05() throws Exception
{
String expectedld = "connectionl";
assertEquals(expectedld,
xcml . getUserSchema() .
getConnection().
get(0) .getConnectionID());
}
Result e Pass

88

Test ID UT_1.6
Code /*The xcml contains one medium of type = "LiveAV"
*/
public void test _06() throws Exception
{
String expectedld = "LiveAV";
assertEquals(expectedld,
xcml . getUserSchema() .
getMediumType() -get(0).
getMediumTypeName());
}
Result e Pass
Test ID utT_1.7
Code /*The xcml contains one medium of type = "Generic"
*/
public void test 07() throws Exception
{
String expectedld = "Generic';
assertEquals(expectedld,
xcml .getUserSchema() .
getFormType() -get(0).
getFormTypeName());
}
Result e Pass

89

Test ID

UT_1.8

Code

/*The xcml has an IsAttached, it connects Person 0O to
device 001"
*

*/
public void test 08() throws Exception
{
String expectedSourceld;
String expectedTargetld;

expectedSourceld = xcml.getUserSchema().
getPerson().get(0).
getPersoniID(Q);

expectedTargetld = xcml.getUserSchema().
getConnection() .get(0).
getDevice().get(0).
getDevicelD();

assertEquals(expectedSourceld,
xcml .getUserSchema().
getlsAttached() .get(0).
getPersoniD());
assertEquals(expectedTargetld,
xcml . getUserSchema() .
getlsAttached() .get(0).
getDevicelD());

Result

e Pass

90

Screen Shot of Unit Test Cases:

Fle Edit Source Refactor MNavigate Search Project Run Sample Window Help

B-HE %5 0 Q EHEG- PIe OO P - F G 75 5 Dt (& e |
{2 Package Explore [T’: Hierarchy [ﬂu Junit &3 \\.k_l:' O || [1] ¥cmisecondTest.java ‘rm KemlProvider. java |f [3] ¥emiFactory.java (m Xeml_UnitTest.java Xaﬁ&tﬁh}g«:&%ﬂt £3 »\:: .=' E & TaskList 22 B =0
Finished after 1.453 seconds i @ 8 w - &
] n a@ssertEgquals | expectedId,
8" @l % . xcml.getUserSchems () .getMediumType () .get (0) .getMediumTypeName ()) 7 Find: Foal
Runs; 8/8 B Errors: 0 B Faiures: 0 X (2% Uncategorized
I | = contains ome medium of type = "Generic

a2 EE unitTests.Xcml_getObjects_UnitTest [Runner: JUnit 3]
‘g test_01(0.713) : - :
EE test 02 (0,155) & 1?ub11c wvoid test_07 () throws Exception
BE] test_03 (0.1415) N
] test_04 (0,078 5)
BE] test 05 (0.0525)
BE] test_06 (0.0735)
] test_07 (0,078 5)
e test 08 (0,078 5)

*/

String expectedId = "Generic";

assertEquals| expectedId,
xeml .getUserSchema () .getFormIvpe () .get (0) .getFormTyvpeName ()) ;

ne xcml has an IsAttached, it connects Person O to deviece 0017

= o= Outline EX\\ Som
’ 5 . e |
- - g;ubllc void test_08() throws Exception %],"‘z \Q \5 . \f =
[—] Ji String expectedSourceld; - @)icm\jetohjett-
= Failure Trace String expectedTargetnTd: 8 xcmiHandler : %
Fem el xeml
expectedSourceld = xcml.getUserSchema () .getPerson().get (0).getPersonID(); e input : File
expectedTargetId = xcml.getUserSchema () .getConnection () .gect (0).gecDevice () .get(0) & output: File
B load¥cmi(File)
assartEquals| expectedSourceld, & a setUp)
xeml . getUserSchema () .gecIsfAttached() .get (0) .gectPersonID()) - @ test 010
assertEquals| expectedTargetId, @ test 020 =
xcml .getUserSchema () .getIsAttached () .get (0) .getDeviceID({)); @ test 030
H @ test 040
@ test 050
@ test 060
- @ test_07()
@ test 080 laa)
(] Im | I | N
0¥ Vritable SmartInsert | 142:6 5 B E B

91

7.4. Evaluation of Tests

Unique ID Test Result Actual Result

TCS_1.1 Pass CME is launched

TCS_1.2 Pass CME is launched

TCS_1.3 Pass Invalid UserName or Password

TCS_2.1 Pass GCML1.geml_diagram is displayed on CME
GCML1.geml_diagram and

TCS_2.2 Pass GCML2.geml_diagram are displayed on CME
Error Message “ There is no editor Registered for

TCS_2.3 Pass the file GCMLx.cml”

TCS_3.1 Pass Transformation Complete

TCS_3.2 Pass Transformation Complete

TCS_3.3 Pass Cannot find the XCML path

TCS_4.1 Fail Not Implemented yet

TCS_4.2 Fail Not Implemented yet

TCS_4.3 Fail Not Implemented yet

Transformation Complete

Note: We need to make changes to our GCML to
TCS_5.1 Pass matched Team’s 1 XCML schema.

Transformation Complete

Note: We need to make changes to our GCML to
TCS_5.2 Pass matched Team’s 1 XCML schema.

Cannot find the GCML path

Note: We need to make changes to our GCML to

TCS_5.3 Pass matched Team’s 1 XCML schema.
TCS_6.1 Pass No node has a red cross on it
TCS_6.2 Pass No node has a red cross on it

92

Red cross is seen on Person with Personld =

TCS_6.3 Pass “Lazaro”
TCS_7.1 Pass GCML5.geml is saved.
DialogMsg ' Do you want to overwrite'. The
TCS_7.2 Pass new model 1s saved.
TCS_7.3 Pass Message “Invalid File”
SST 1.1 Pass File out.xeml was created
SST 1.2 Pass File out.geml was created
UT_1.1toUT_1.8 | Pass Screen shots provided.

93

8.Glossary

Person: Participant involved in a communication.

Device: Represents the virtual device used by a person during communication, e.g., cell phone, PDA,

or computer. Devices have different capabilities to support different built-in medium types.

Connection: a channel in which the information exchange will occur. Constraints such as

security, quality of service and other requirements can be applied to the connection.

Medium: A data piece or data stream, like file (e.g. Text file, Binary file), text, or a live

stream (live audio).

Form: A container for other forms and / or media to be shared during a communication

event.

Model Transformer: This component receives a model and translates it to the corresponding

functionality, usually as calls to the Communication Engine.
EMF: Eclipse Modeling Framework is an Eclipse-based modeling framework and code
generation facility for building tools and other applications based on a structured data

model.

UML: UML (Unified Modeling Language) is a language used to visualize, specify, construct,

and document the artifacts of a software-intensive system.
CML: Communication Modeling Language, a DSL to specify the Communication domain.
CVM: Communication Virtual Machine

GCML: Graphical CML. Communication Modeling Language represented as Graphs.

94

GEF: Graphical Editing Framework

GMF: Graphical Modeling Framework

NCB: Network Communication Broker

SE: Synthesis Engine

UCI: User Communication Interface.

CME: Communication Modeling Environment. The system described in this document.

XML: Extensible Markup Language

XCML: Communication Modeling Language represented in XML

95

9.Signatures

DEVELOPER: TEAM 2

Print Name:

Print Name:

Print Name:

Print Name:

Print Name:

Print Name:

Print Name:

Lazaro Pi

Leandro Rafael Wong
Sandeep Varry
Manasa Bharadwaj
Jorge Jauregui
Roberto Espinoza

Marc Gauthier

96

Authorized Signature
Authorized Signature
Authorized Signature
Authorized Signature
Authorized Signature
Authorized Signature

Authorized Signature

10.

Appendix

10.1. Appendix A — Project Schedule

Task Milestone Task Name Start Finish Predec. Duration
1 No Analysis/Software Requirements 9/3/2008 10/6/2008 24 days
2 No Generate Use Cases 9/9/2008 9/15/2008 5 days
3 No Primary Project Schedule 9/3/2008 9/8/2008 4 days
Identify =~ Hardware, Software
4 No Resources 9/16/2008 9/22/2008 2 5 days
5 Yes Review Use Cases 9/16/2008 9/16/2008 2 1 day
6 No Identify milestones 9/16/2008 9/17/2008 2,5 1.5 days
7 No Create Cost Analysis 9/17/2008 9/22/2008 5 4 days
8 No Obtain approvals to proceed 9/22/2008 9/22/2008 7 1 day
Create Object and Dynamic
9 No diagrams 9/16/2008 9/18/2008 5 2.5 days
10 Yes Create SRD deliverable 10/1/2008 10/2/2008 5 1.5 days
11 No Create Presentation 10/6/2008 10/6/2008 10 1 day
12 No Design 10/7/2008 11/3/2008 20 days
13 No Review software specifications 10/7/2008 10/10/2008 11 3.5 days
14 No Create Architectural Design 10/9/2008 10/15/2008 13 4 days
15 No Create Object Design 10/9/2008 10/23/2008 13 10 days
16 Yes Review Design with Team 10/23/2008 10/28/2008 15,14 3 days
17 No Obtain approval to proceed 10/28/2008 10/28/2008 16 0.5 days
18 Yes Create DD deliverable 11/3/2008 11/3/2008 17 0 days
22.5
19 No Implementation 10/28/2008 11/27/2008 days
20 No Review System / Object Design 10/28/2008 10/31/2008 16 3.5 days
21 Yes Implement Import module 10/28/2008 11/25/2008 16 20 days
22 Yes Implement Convert 10/28/2008 11/11/2008 16 10 days
23 No Unit Testing 10/31/2008 11/6/2008 16FS+3 4 days
21FS-
24 No Functional Testing 11/4/2008 11/27/2008 75% 17 days
25 No Development complete 11/27/2008 11/27/2008 24 0.5 days
26 No Final Deliverable 11/4/2008 12/1/2008 20 days
Develop Final Software
27 No documentation 11/4/2008 11/10/2008 12 5 days
28 No Review of Final Deliverable 11/11/2008 11/11/2008 27 0.5 days
29 No Final Presentation 11/28/2008 12/1/2008 19 2 days

97

10.2. Appendix B — Use Cases

Explanations:
Actors: Modeler and Administrator. For misuse cases: Hacker
Use Case ID: The use case ID has been coded as follows:

Team + “” + SystemName +”_” + UseCaseLevel + ”_” + IncrementalNumericID + “ 7 +

UseCaseName
Example: T2_CME_SUB_01_CreateModel

This can be interpreted as a use case by Team 2 for the Communication Modeling
Environment system. This is a functional sub-use case, has numeric id 01, and relates to

the creation of a model.
Use Case Level Abbreviations:
HIGH = High Level Use Case
SYSE2E = System Level End to End Use Case
SUB = Functional Sub-use Case
10.2.1.1. Drag Object to Canvas

Use Case ID: T2_CME_SUB_01_DragObjectToCanvas

Use Case Level: Functional Sub-use Case

Details
Actors: Modeler

98

Pre-conditions: Modeler has the Communication Modeling Environment (CME) open and
he is editing a Model.
Description: The Modeler will drag and drop shape to the Canvas.
Trigger: The Modeler visually selects the shape he wants to add to the model.
The system responds by ...
1. Modeler clicks on the toolbox item representing the shape and without releasing the
mouse drags the cursor over the canvas.
2. The CME validates that the shape can be added to the canvas in the area selected by
Modeler.
3. The CME draws the shape on the canvas.
4. Modeler saves the Model (click save button on Application menu)
Post-conditions: the model contains the newly added shape.

Alternative courses of action: None

Extensions: None
Exceptions:
o The Modeler can drop the shape in an illegal area; in this case the CME will issue an

error.

Related use cases:

o T2_CME_SUB_02_CreateEdgeBetweenObjects

Decision support

Frequency: Moderate to High - (average of 10 shapes per model) Performed for all shapes to
be added to a model, but the creation of models is infrequent (10 models per day).
Criticality: High - Directly support creation of models (one of the main uses of the system).

Risk: Medium
Constraints:

Usability

o No previous training is needed.

99

e Drag and drop functionality will be provided by the Communication Modeling
Environment.
Reliability
e Mean Time to Failure — 1% failure for every 24 hours of operation is acceptable.
Performance
e The created model shall be saved within 2 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

¢ C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/18/2008
Date Last Modified: 09/21/2008

10.2.1.2. Create Edge between Objects

Use Case ID: T2_CME_SUB_02_CreateEdgeBetweenObjects

Use Case Level: Functional Sub-use Case

Details
Actors: Modeler
Pre-conditions: Modeler has the Communication Modeling Environment (CME) open and
he is editing a Model.
Description: The Modeler will connect two shapes on the Canvas by creating a line from
one to the other.
Trigger: The Modeler visually selects the shapes he wants to connect and decides the
direction of the connection.

The system responds by ...

100

1. Modeler clicks on the start shape and without releasing the mouse drags the cursor
to the end shape and then releases the click.
2. The CME validates that the shapes can be connected according to the metamodel (it
also checks the direction).
3. The CME draws the edge between the 2 shapes.
4. Modeler saves the Model (click save button on eclipse menu)
Post-conditions: the model contains the newly added edge (connection).

Alternative courses of action: None

Extensions: None
Exceptions:
e The Modeler can try to connect 2 shapes against the metamodel definition; in this

case the CME will issue an error.

Related use cases:

e T2 _CME_SUB_01_DragObjectToCanvas

Decision support

Frequency: Moderate to High - (average of 10 edges per model) Performed for all edges to be
added to a model, but the creation of models is infrequent (10 Models per day).

Criticality: High - Directly support creation of models (one of the main uses of the system).

Risk: Medium

Constraints:
Usability
e No previous training is needed.
e Drag and drop functionality will be provided by the Communication Modeling
Environment.
Reliability
e Mean Time to Failure — 1% failure for every 24 hours of operation is acceptable.
Performance

e The created model shall be saved within 2 seconds.

101

Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

e C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/18/2008
Date Last Modified: 09/21/2008

10.2.1.3. Create New Empty Model
Use Case ID: T2_CME_HIGH_03_CreateNewEmptyModel
Use Case Level: High Level Use Case

Details
Actors: Modeler
Pre-conditions: Modeler has the Communication Modeling Environment (CME) open.
Description: The Modeler will create a new model.
Trigger: The Modeler clicks the “New” menu item in the “File” menu of the CME.
The system responds by ...
1. CME presents the Create New Diagram Dialog Wizard to the user (select file that
will contain Diagram Model page).
2. In the “File” text box, the Modeler enters the fully qualified name of the Layout file
that will contain layout information for the new model.
3. The Modeler clicks “Next” button.
4. CME presents the Create New Diagram Dialog Wizard to the user (select file that

will contain Domain Model page).

102

5. In the “File” text box, the Modeler enters the fully qualified name of the object data
file that will contain object information for the new model.
6. The Modeler clicks “Finish” button.
7. The system presents a dialog box saying Creating Diagram and Model files while
those files are being created.
8. The CME system opens the newly created empty file in the editor.
Post-conditions: the two files representing the model are saved in the file system and the
Model is open in the editor ready to be edited. The model is empty (no shapes or edges).
Alternative courses of action:
At steps 3 to 6 the Modeler can hit “Back” button to go to the previous step in the
Wizard.
At steps 2 to 6 the Modeler can hit “Cancel” button to cancel the creation of the new
model.
At steps 2 and 5 the Modeler can hit the “Browse” button to visually pick the location of

the new files.

Extensions:
e T2 CME_HIGH_04_CreateGenericModel
Exceptions:
e The Modeler can enter a name that already exists. The CME will warn the modeler

that this action will overwrite the exiting model.

Related use cases:
o T2_CME_SUB_01_DragObjectToCanvas
e T2 _CME_SUB_02_CreateEdgeBetweenObjects

Decision support
Frequency: Moderate - Performed for all newly created models (10 Models per day).
Criticality: High - Directly support creation of models (one of the main uses of the system).

Risk: Medium

Constraints:

103

Usability
e No previous training is needed.
e Drag and drop functionality will be provided by the Communication Modeling
Environment.
Reliability
e Mean Time to Failure — 1% failure for every 24 hours of operation is acceptable.
Performance
o The created model shall be saved within 2 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

¢ Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/18/2008
Date Last Modified: 09/21/2008

10.2.1.4. Create Generic Model
Use Case ID: T2 CME_HIGH 04 CreateGenericModel
Use Case Level: High Level Use Case (abstract)

Details
Actors: Modeler
Pre-conditions: Modeler has the Communication Modeling Environment (CME) open.
Description: The Modeler will create and save a new model and add shapes, edges, and
will input desired values.
Trigger: The Modeler clicks the “New” menu item in the “File” menu of the CME.
The system responds by ...
1. All steps are necessary to have newly created empty file in the editor (as specified in

use case T2_CME_HIGH_03_CreateNewEmptyModel).

104

5.
6.

Modeler decides what he needs to model and identifies shapes, edges, and values.
For all shapes, modeler adds the shape to the canvas
(T2_CME_SUB_01_DragObjectToCanvas).

For all edges, modeler connects source shape to target shape with the selected edge
(T2_CME_SUB_02_CreateEdgeBetweenObjects).

Modeler sets all relevant properties with desired values.

Modeler saves the completed model by clicking the save button.

Post-conditions: the two files representing the model are saved in the file system and the

Model is open in the editor ready to be edited. The model is contains all shapes, edges

and values.

Alternative courses of action:

None specific to this level.

Extensions:

Concreted by T2_CME_SYSE2E_05_CreateGroupChat
Concreted by T2_CME_SYSE2E_06_Create2WayVoiceConnection
Concreted by T2_CME_SYSE2E_07_CreateFileTransfer

Exceptions:

None specific to this level.

Related use cases:

Uses T2_CME_SUB_01_DragObjectToCanvas
Uses T2_CME_SUB_02_CreateEdgeBetweenObjects

Decision support

Frequency: Moderate - Performed for all newly created models (10 Models per day).

Criticality: High - Directly support creation of models (one of the main uses of the system).

Risk: Medium

Constraints:

Usability

105

¢ No previous training is needed.
e Drag and drop functionality will be provided by the Communication Modeling
Environment.
Reliability
e Mean Time to Failure — 1 failure for every 24 hours of operation is acceptable.
Performance
e The created model shall be saved within 2 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

e C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/18/2008
Date Last Modified: 09/21/2008

10.2.1.56. Open Existing GCML Model

Use Case ID: T2_CME_SYSE2E_05_OpenExistingModel
Use Case Level: System-Level End-to-End

Details
Actors: Modeler
Pre-conditions: Modeler has the Communication Modeling Environment (CME) open.
There 1s an exciting model in GCML format and the modeler knows the full path to the
model.
Description: The Modeler will open a previously saved model into the editor.
Trigger: The Modeler clicks the “Open” menu item in the “File” menu of the CME.
The system responds by ...

106

1. CME presents the Open File Dialog.
2. The Modeler enters the fully qualified name of the previously saved Diagram file
that he wants to open.
3. The Modeler clicks “Open” button.
4. The CME system opens the picked file in the editor.
Post-conditions: the Model is open in the editor and ready to be edited.
Alternative courses of action:
At steps 3 to 6 the Modeler can hit “Back” button to go to the previous step in the
Wizard.
At steps 2 to 6 the Modeler can hit “Cancel” button to cancel the creation of the new
model.
At steps 2 and 5 the Modeler can hit the “Browse” button to visually pick the location of

the new files.

Extensions:
None.
Exceptions:
e The Modeler can enter a name that already exists. The CME will warn the modeler

that this action will overwrite the exiting model.

Related use cases:
e T2 _CME_SUB_01_DragObjectToCanvas
e T2_CME_SUB_02_CreateEdgeBetweenObjects

Decision support

Frequency: Moderate to High - Performed for every time the Modeler wants to open an
existing model (80 times per day).

Criticality: High - Directly support edition of models (one of the main uses of the system).

Risk: Medium

Constraints:

Usability

107

¢ No previous training is needed.
Reliability
e Mean Time to Failure — 1% failure for every 24 hours of operation is acceptable.
Performance
o The created model shall be saved within 2 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

¢ Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/18/2008
Date Last Modified: 09/21/2008

10.2.1.6. Create Group Chat Model

Use Case ID: T2_CME_SYSE2E_06_CreateGroupChat
Use Case Level: System-Level End-to-End

Details
Actors: Modeler.
Pre-conditions: The Modeler has the Communication Modeling Environment (CME)
Open and has access to save created models to the Repository.
Description: The Modeler wishes to create a 3 way chat model and he will drag and drop
shapes to the Canvas in order to model three way chat communication.
Trigger: The Modeler Starts a new model by selecting the “New” option in the CME.
The system responds by ...
1. The CME creates a new model as defined on T2_CME_HIGH_03_CreateNewModel.
2. The Modeler drags Participant to the canvas.
3. The Modeler drags isAttached to the canvas.

108

The Modeler creates edge from Person to isAttached.
The Modeler drags Device to the canvas.

The Modeler creates edge from isAttached_1 to Device_1.
Repeat steps 2 through 7 n times

The Modeler drags Medium to the canvas.

e R A -

The Modeler drags Connection to the canvas.

10. The Modeler creates edges from Connection to Medium.

11. The Modeler creates edge from Connection to Device.

12. Repeat steps 11 n-times.

13. The Modeler saves the model to the repository.
Post-conditions: After this use case is complete, the created model has been saved to the
repository and is ready to be used by the GUI user.
Alternative courses of action: The Modeler can instantiate all fields in the modeled
objects (i.e.: set all properties) in which case the model created can be executed without

prompting the final user to fill any other input.

Extensions: None

Exceptions: None

Related use cases:
e Extends T2_CME_HIGH_03_CreateNewModel
e T2 _CME_SUB_01_DragObjectToCanvas
e T2_CME_SUB_02_CreateEdgeBetweenObjects

Decision Support
Frequency: Low - This model would have to be created only once, it will be modified
sporadically.
Criticality: High - Directly support one of the main uses of the system
Risk: Medium

Constraints:

Usability

109

¢ No previous training is needed.
e Drag and drop functionality will be provided by the use of the Communication
Modeling Environment.
¢ On the user interfaces, all the shapes must contain brief textual descriptions.
Reliability
e Mean Time to Failure — 1% failure for every 24 hours of operation is acceptable.
Performance
e The created model shall be saved within 2 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

¢ C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/17/2008
Date Last Modified: 09/21/2008

10.2.1.7. Create 2-Way Voice Connection Model

Use Case ID: T2_CME_SYSE2E_07_ Create2WayVoiceConnection
Use Case Level: System-Level End-to-End

Details
Actors: Modeler
Pre-conditions: Modeler has the Communication Modeling Environment (CME) open and
has access to save created models to the model Repository
(“<sysFolder>\CME\Repository\”).
Description: The Modeler will drag and drop shapes to the Canvas in order to model two

way voice communication.

110

Trigger: The Modeler Starts a new model by selecting the “New” option in the CME.

The system responds by ...

1
2
3
4.
5
6

The CME creates the new model as defined on T2_CME_HIGH_03_CreateNewModel.
Modeler drags Participantl to the canvas and sets the Role property to “Caller”.
Modeler drags Participant2 to the canvas and sets the Role Property to “Receiver”.
Modeler Devicel to the canvas and set device capability to “LiveAudio”.

Modeler Device2 to the canvas and set device capability to “LiveAudio”.

Modeler drags Connectionl to the canvas and creates edges from Connectionl to
Devicel and Device2.

Modeler drags isAttachedl to the canvas and creates edge from isAttachedl to
Devicel.

Modeler drags isAttached2 to the canvas and creates edge from isAttached2 to
Device2.

Modeler saves the model to the repository.

Post-conditions: After this use case is complete, the created model has been saved to the

repository and is ready to be used by the GUI user.

Alternative courses of action: The Modeler can instantiate all fields in the modeled

objects (i.e.: set all properties) in which case the model created can be executed with

prompting the final user to fill any other input.

Extensions: None

Exceptions: None

Related use cases:

Extends T2_CME_HIGH_03_CreateNewModel
T2_CME_SUB_01_DragObjectToCanvas
T2_CME_SUB_02_CreateEdgeBetweenObjects

Decision Support

Frequency: Low - This model would have to be created only once, it will be modified

sporadically.

111

Criticality: High - Directly support one of the main uses of the system
Risk: Medium

Constraints:
Usability
o No previous training is needed.
e Drag and drop functionality will be provided by the use of the Communication
Modeling Environment.
e On the user interfaces, all the shapes must contain brief textual descriptions.
Reliability
e Mean Time to Failure — 1% failure for every 24 hours of operation is acceptable.
Performance
o The created model shall be saved within 2 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

e Client requests the implementation to be done in Java and the Eclipse framework.
Modification History:
Owner: Lazaro Pi

Initiation Date: 09/17/2008
Date Last Modified: 09/21/2008

10.2.1.8. Create File Transfer Model

Use Case ID: T2_CME_SYSE2E_08_CreateFileTransfer
Use Case Level: System-Level End-to-End

Details
Actors: Modeler

112

Pre-conditions: Modeler has the Communication Modeling Environment (CME) Open
and has access to save created models to the Repository.

Description: The Modeler drags Shapes and Edges to the CME in order to create a File
Sharing Model that users will execute later.

Trigger: The Modeler Starts a new model by selecting the create new option in the CME,
(view T2_CME_HIGH_03_CreateNewModel)

The system responds by ...

The CME creates a new model as defined on T2_CME_HIGH_03_CreateNewModel.
The Modeler drags Personl to the canvas.

The Modeler drags Person2 to the canvas.

The Modeler drags Devicel to the canvas and set device capability to TextFile.

The Modeler drags Device2 to the canvas and set device capability to TextFile.

The Modeler drags Medium1 to the canvas.

NS otk oo

The Modeler drags Connectionl to the canvas and creates edges from Connectionl to

Devicel, Device2, and Mediuml1.

8. The Modeler drags isAttachedl to the canvas and creates edge from isAttachedl to
Devicel.

9. The Modeler drags isAttached2 to the canvas and creates edge from isAttached2 to

Device2.

10. The Modeler saves the model to the repository.

Post-conditions: After this use case is complete, the created model has been saved to the
repository and is ready to be used by the GUI user.

Alternative courses of action: The Modeler can instantiate all fields in the modeled
objects (i.e. set all properties) in which case the model created can be executed with

prompting the final user to fill any other input.

Extensions: None

Exceptions: None

Related use cases:
e Extends T2 CME_HIGH 03 _CreateNewModel

113

e T2 _CME_SUB_01_DragObjectToCanvas
e T2_CME_SUB_02_CreateEdgeBetweenObjects

Decision Support
Frequency: Low - This model would have to be created only once, it will be modified
sporadically.
Criticality: High - Directly support one of the main uses of the system
Risk: Medium

Constraints:
Usability
e No previous training is needed.
e Drag and drop functionality will be provided by the use of the Communication
Modeling Environment.
e On the user interfaces, all the shapes must contain brief textual descriptions.
Reliability
e Mean Time to Failure — 1% failure for every 24 hours of operation is acceptable.
Performance
e The created model shall be saved within 2 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

¢ Client requests the implementation to be done in Java and the Eclipse framework.
Modification History:
Owner: Lazaro Pi

Initiation Date: 09/17/2008
Date Last Modified: 09/21/2008

10.2.1.9. Convert Model from GCML to XCML

114

Use Case ID: T2_CME_SYSE2E_09_ConvertFromGCMLtoXCML
Use Case Level: System-Level End-to-End

Details
Actors: Modeler
Pre-conditions: Modeler has the Communication Modeling Environment (CME) open and
has a GCML file open in the CME.
Description: The modeler will give CME as input a GCML file and the CME will return
the XCML version of the input file.
Trigger: The Modeler selects the Convert from GCML to XCML option on the menu.
The system responds by ...
1. CME reads the GCML text into memory as a data structure of CML objects.
2. CME populates the XCML file with the CML objects following the CML v1.1 xml
schema.
3. CME saves the XCML file in the repository.
4. CME returns the focus back to the canvas.
Post-conditions: the GCML version is still displayed on the CME canvas. The XCML file
is saved in the repository.
Alternative courses of action:
None.
Extensions:
None.
Exceptions:
e None.
Related use cases:
e T2 CME_SYSE2E_10_ConvertFromGCMLtoXCML
Decision support
Frequency: Moderate to high - Performed for every time the Modeler wants to export an
existing GCML model (12 times per day).
Criticality: Low. Only need to verify adherence to the CML v1.1 xml schema.
Risk: Low. It is mostly a straight forward approach.

Constraints:

115

Usability
e Internal to system.
Reliability
e Mean Time to Failure — 1 failure for every 120 hours of operation is acceptable.
Availability
e System should notify the user of a failure (incorrect format) gracefully without
aborting the program
Performance
e Must take less than 15 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
e Must be easily upgradeable to accommodate new shapes and objects.
Implementation

¢ Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Leandro Wong
Initiation Date: 10/06/2008
Date Last Modified: 10/06/2008

10.2.1.10. Convert Model from XCML to GCML

Use Case ID: T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML

Use Case Level: System-Level End-to-End

Details
Actors: Modeler
Pre-conditions: Modeler has the Communication Modeling Environment (CME) open and
has a previously validated (as explained in Validate Model) XCML file open in the XML
editor of the CME (the XML text). Alternatively, the use case can be called from Import
function and the XCML file can be selected in the file system.

116

Description: The modeler will give CME as input an XCML file and the CME will return
the GCML version of the input file.
Trigger: The Modeler selects the Convert from XCML to GCML option on the menu.

The system responds by ...

1.
2.

7.
8.

CME reads the XCML text into memory as a data structure of CML objects.

CME checks if it has a GCML file associated with this XCML file in the repository. If
that is the case, CME compares the 2 files to see if they are equivalent (by
comparing all objects).

If they are equivalent, CME uses the stored GCML and goes to step 8; otherwise it
goes to step 4.

For each of the objects, CME calls the T2_CME_SUB_14_ TransformObjectData to
get the object data into GCML format.

For each of the objects, CME initializes an empty layout entry.

For each of the objects, CME will call the T2_CME_SUB_15_GenerateLayoutData to
populate the layout data structure.

CME will use the object data and layout data to produce the GCML files.

CME opens the GCML file in the Modeling Environment.

Post-conditions: the GCML version of the file is generated and the model is displayed on
the CME canvas.

Alternative courses of action:

This use case can be called from T2_CME_SYSE2E_12_ImportModelFromXCML; in this

case, the use case returns the paths of the file to that use case so that it can be displayed

as a graphical model.

Extensions:

None.

Exceptions:

None.

Related use cases:

Can be called by T2_CME_SYSE2E_12_ImportModelFromXCML
T2_CME_SYSE2E_09_ConvertFromGCMLtoXCML

Decision support

117

Frequency: Moderate to high - Performed for every time the Modeler wants to import an
existing XCML model (8 times per day).
Criticality: High. This is one of the 2 main uses of the system.
Risk: High. This requires algorithms and data structures that complicate the programming.
Constraints:
Usability
e Internal to system.
Reliability
e Mean Time to Failure — 1 failure for every 120 hours of operation is acceptable.
Availability
e System should notify the user of a failure (incorrect format) gracefully without
aborting the program
Performance
e Must take less than 15 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
e Must be easily upgradeable to accommodate new shapes and objects.
Implementation

e C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 10/06/2008
Date Last Modified: 10/06/2008

10.2.1.11. Add Model to Repository
Use Case ID: T2_CME_SYSE2E_11_AddModelToRepository
Use Case Level: System-Level End-to-End

Details
Actors: Modeler

118

Pre-conditions: Modeler has the Communication Modeling Environment (CME) open.
There is an existing model in the file system and the modeler knows the full path to the
model.
Description: The Modeler will add the existing model to the repository structure and will
save additional metadata to describe the model.
Trigger: The Modeler clicks the “Models Administration” menu item in the CME.
The system responds by ...

1. CME presents the Models Administration Window.

2. The Modeler clicks the Add Model Entry button.

3. The CME creates a new entry for the model and selects the entry in the window.

4. Modeler enters the name, description, fully qualified path and available formats into

the appropriate text boxes.

The Modeler clicks “Save” button.

o o

The CME system saves the entry into the repository data structure and saves a
copy of the model into the internal repository folder.

Post-conditions: the Model is saved in the internal repository and there is an entry in the
repository data structure to identify the Model.

Alternative courses of action:

At steps 2 to 5 the Modeler can hit “Cancel” button to cancel the creation of the new
entry.

At step 4 the Modeler can hit the “Browse” button to visually pick the location of the

model.

Extensions:

None.

Exceptions:

e The Modeler can enter a name that already exists. The CME will warn the modeler

that this action will overwrite the exiting model.

Related use cases:

e T2 CME_SYSE2E_23_EditModelMetadata

Decision support

119

Frequency: Moderate - Performed for every time the Modeler wants to save a new model to
the repository (10 times per day).

Criticality: High - Directly support one of the main uses of the system.

Risk: Medium

Constraints:
Usability
e No previous training is needed.
Reliability
e Mean Time to Failure — 1 failure for every 24 hours of operation is acceptable.
Performance
e The model shall be saved within 2 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

¢ C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/18/2008
Date Last Modified: 10/04/2008

10.2.1.12. Import Model from XCML

Use Case ID: T2_CME_SYSE2E_12_ImportModelFromXCML
Use Case Level: System-Level End-to-End

Details

Actors: Modeler

Pre-conditions: Modeler has the Communication Modeling Environment (CME) open.

120

Description: The Modeler will import an XCML file into the CME by picking the file on
the File System.
Trigger: The Modeler clicks the “Import from XCML” menu item in the “File” menu of
the CME.
The system responds by ...
1. CME presents the Open File Dialog.
2. The Modeler enters the fully qualified name of the previously saved Diagram file
that he wants to import.
3. The Modeler clicks “Open” button.
4. The XCML file is converted to GCML as explained in related use case
T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML .
5. The CME saves the files produced by the conversion into the repository.
6. The CME system opens the converted file in the editor.
Post-conditions: the Model is open in the editor and ready to be edited.
Alternative courses of action:
At step 2 the user can visually browse the file system to select the file to be imported.

In step 3 the Modeler has the option to cancel the import request.

Extensions:
None.
Exceptions:
e If the file name to be imported already exists (GCML, XCML or both), the user will
be prompted to enter a different file name.

¢ The system could not load the XCML because it is in the wrong format.

Related use cases:
e T2 CME _SYSE2E 09 ConvertFromGCMLtoXCML
e T2 _CME_SYSE2E_13_ImportModelFromGCML

Decision support
Frequency: Moderate - Performed for every time the Modeler wants to import an existing

XCML model (10 times per day).

121

Criticality: High - Directly support import of models (one of the main uses of the system).
Risk: High. Implementing this use case is increased in difficulty due to the fact that the

model should be rendered in as an aesthetically pleasing way as possible

Constraints:
Usability
¢ No previous training is needed.
Reliability
e Mean Time to Failure — 1 failure for every 24 hours of operation is acceptable.
Availability
e System should notify the user of a failure (incorrect format) gracefully without
aborting the program
Performance
o The model shall be imported within 5 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

e C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Jorge Jauregui
Initiation Date: 09/18/2008
Date Last Modified: 09/21/2008

10.2.1.13. Import Model from GCML

Use Case ID: T2_CME_SYSE2E_13_ImportModelFromGCML
Use Case Level: System-Level End-to-End

Details
Actors: Modeler

122

Pre-conditions: Modeler has the Communication Modeling Environment (CME) open.
Description: The Modeler will import a GCML file into the CME by picking the file on
the File System.
Trigger: The Modeler clicks the “Import from GCML” menu item in the “File” menu of
the CME.
The system responds by ...

1. CME presents the Open File Dialog.

2. The Modeler enters the fully qualified name of the previously saved Diagram file

that he wants to import.

3. The Modeler clicks “Open” button.

4. The CME saves the files into the repository.

5. The CME system opens the file in the editor.
Post-conditions: the Model is open in the editor and ready to be edited.
Alternative courses of action:
At step 2 the user can visually browse the file system to select the file to be imported.

In step 3 the Modeler has the option to cancel the import request.

Extensions:
None.
Exceptions:
e If the file name to be imported already exists (GCML, XCML or both), the user will
be prompted to enter a different file name.

¢ The system could not load the GCML because it is syntactically incorrect.

Related use cases:
e T2 CME_SYSE2E 09 ConvertFromGCMLtoXCML
e T2_CME_SYSE2E_12_ImportModelFromXCML

Decision support
Frequency: Moderate - Performed for every time the Modeler wants to import an existing

GCML model (8 times per day).

123

Criticality: Low. The Modeler can already open file and then use save into a different
location. It can also manually import in the file system and modify the repository files.

Risk: Low. The G-CML already contains the graphical representation of the
communications model. Importing and rendering onto the canvas should be

straightforward.

Constraints:
Usability
o No previous training is needed.
Reliability
e Mean Time to Failure — 1 failure for every 24 hours of operation is acceptable.
Availability
e System should notify the user of a failure (incorrect format) gracefully without
aborting the program
Performance
e The model shall be imported within 5 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

e Client requests the implementation to be done in Java and the Eclipse framework.
Modification History:
Owner: Jorge Jauregui

Initiation Date: 09/18/2008
Date Last Modified: 09/21/2008

10.2.1.14. Transform Object Data

Use Case ID: T2_CME_SUB_14_TransformObjectData

Use Case Level: Functional Sub-use Case

124

Details
Actors: Modeler
Pre-conditions: Modeler is executing T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML.
Description: The object data information will be transformed from XCML to GCML
format.
Trigger: The Modeler has started the
T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML wuse case. This use case calls
T2_CME_SUB_14 TransformObjectData to get the object data in GCML format by
passing the XCML format to it.
The system responds by ...
1. Transform Object Data receives the object type and information.
2. Transform Object Data creates a new object based on the received information
3. The object is returned to the calling use case.
Post-conditions: the calling use case now has the object in the correct GCML format to
match the corresponding object in the XCML file.
Alternative courses of action:
None
Extensions:
None.
Exceptions:
e None. Transformed Object Data is only called with valid communication object
types.
Related use cases:
e Called by T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML
e T2 CME_SYSE2E_12_ ImportModelFromXCML
Decision support
Frequency: Moderate to high - Performed for every time the Modeler wants to import an
existing XCML model (8 times per day). Average of 20 times per XCML imported
(connections in CVM are objects too).
Criticality: High. Use case T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML depends on

this use case.

125

Risk: Medium. A data structure with mappings between the two formats needs to be

developed, tested and maintained.

Constraints:
Usability
e Internal to system.
Reliability
e Mean Time to Failure — 1 failure for every 120 hours of operation is acceptable.
Availability
e System should notify the user of a failure (incorrect format) gracefully without
aborting the program
Performance
e Really fast. Must take less than 0.45 second.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
e Must be easily upgradeable to accommodate new shapes and objects.
Implementation

e C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Leandro Wong
Initiation Date: 10/05/2008
Date Last Modified: 10/05/2008

10.2.1.15. Generate Layout Data
Use Case ID: T2_CME_SUB_15_GenerateLayoutData

Use Case Level: Functional Sub-use Case
Details

Actors: Modeler
Pre-conditions: Modeler is executing T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML.

126

Description: The layout data information will be generated in order to produce the

complete GCML format version of the Model.

Trigger: The Modeler has started the

T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML wuse case. This use case calls

T2_CME_SUB_15_GenerateLayoutData to get the layout data in GCML format by

passing the current layout data structure (the layout info created so far) and the next

object data to be added to the layout data structure.

The system responds by ...

1. CME gets the shape and size of the object as explained in use case
T2_CME_SUB_16_CalculateShapeAndSize.

2. CME generates the tentative coordinates according to the object’s shape and size
and the rest of the layout entries as explained in
T2 _CME_SUB_17_CalculateCoordinates.

3. CME check the complete layout for overlaps as explained 1in
T2_CME_SUB_18_CheckOverlap.

4. CME returns the update list of layout entries with the added layout data to the
calling use case T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML.

Post-conditions: the calling use case now has the layout information for the current
object as part of the layout data structure.
Alternative courses of action:
None.
Extensions:
None.
Exceptions:
e At step 3, the CME can report that there is overlap; in that case, the use case goes
back to step 2 to generate a corrected set of coordinates and continue from there.
Related use cases:
e C(Called by T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML
e T2_CME_SYSE2E_12_ImportModelFromXCML

Decision support

127

Frequency: Moderate to high - Performed for every time the Modeler wants to import an
existing XCML model (8 times per day). Average of 10 times per XCML imported.
Criticality: High. Use case T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML depends on
this use case.
Risk: High, Generating layout is one of the most difficult parts of the project. A data
structure with current layout data must be maintained.
Constraints:
Usability

e Internal to system.
Reliability

e Mean Time to Failure — 1 failure for every 120 hours of operation is acceptable.
Availability

e System should notify the user of a failure (incorrect format) gracefully without

aborting the program

Performance

e Really fast. Must take less than 1 second.
Supportability

e The application will rely on the Java platform (version 5 or later) so it can be ported

to any environment where Java can be installed.

e Must be easily upgradeable to accommodate new shapes and objects.

Implementation

¢ C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Leandro Wong
Initiation Date: 10/05/2008
Date Last Modified: 10/05/2008

10.2.1.16. Calculate Shape and Size

Use Case ID: T2_CME_SUB_16_CalculateShapeAndSize

Use Case Level: Functional Sub-use Case

128

Details
Actors: Modeler
Pre-conditions: Modeler is executing T2_CME_SUB_15_GenerateLayoutData.
Description: The shape and size of the object will be generated in order to produce the
layout data information needed for the GCML format version of the Model.
Trigger: The Modeler has started the T2_CME_SUB_15_GenerateLayoutData use case.
This use case calls T2_CME_SUB_16_CalculateShapeAndSize to get the shape and size
of the current object.
The system responds by ...

1. CME gets the default shape and size from the stored table of shape and sizes based
on the object type.

2. CME adjusts up the Width and Height based on the current attribute values stored
in the object instance (the length of any string values, e.g. the personName for the
Person class).

3. CME adjust the size so that is within the Minimum and Maximum values as
specified in the table of shapes and sizes.

4. CME returns the object layout data with the updated shape and size values.
Post-conditions: the calling use case now has the updated shape and size values for the
current object as part of the layout data structure.

Alternative courses of action:
None.
Extensions:
None.
Exceptions:
e None.
Related use cases:
e Called by T2_CME_SUB_15_GenerateLayoutData
e Followed by T2_CME_SUB_17_CalculateCoordinates
Decision support
Frequency: Moderate to high - Performed for every time the Modeler wants to import an

existing XCML model (8 times per day). Average of 10 times per XCML imported.

129

Criticality: High. Use case T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML depends on
this use case.
Risk: Medium, A data structure with default shape, size, minimum and maximum values
for each of the object types must be developed, tested and maintained.
Constraints:
Usability
e Internal to system.
Reliability
e Mean Time to Failure — 1 failure for every 120 hours of operation is acceptable.
Availability
e System should notify the user of a failure (incorrect format) gracefully without
aborting the program
Performance
e Really fast. Must take less than .25 second.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
e Must be easily upgradeable to accommodate new shapes and objects.
Implementation

e C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Leandro Wong
Initiation Date: 10/05/2008
Date Last Modified: 10/05/2008

10.2.1.17. Calculate Coordinates
Use Case ID: T2 CME_SUB 17 CalculateCoordinates

Use Case Level: Functional Sub-use Case

Details
Actors: Modeler

130

Pre-conditions: Modeler is executing T2_CME_SUB_15_GenerateLayoutData.
Description: The coordinates of the object will be generated in order to produce the
layout data information needed for the GCML format version of the Model.

Trigger: The Modeler has started the T2_CME_SUB_15_GenerateLayoutData use case.
This use case calls T2_CME_SUB_16_CalculateCoordinates to get the coordinates of the
current object.

The system responds by ...

1. CME scans the layout data structure once to find the area where it can tentatively
place the object (by going forward adding coordinates plus sizes until it gets to the
current object).

2. CME uses the numbers found in step 1 along with the table of stored heuristics (a
table of possible strategies to place the object based on its type and list of objects
placed so far) to produce a set of possible coordinates.

3. CME returns the object layout data with the updated coordinates produced in step 2.
Post-conditions: the calling use case now has the coordinates for the current object as
part of the layout data structure.

Alternative courses of action:
None.
Extensions:
None.
Exceptions:
e None.
Related use cases:
e Called by T2_CME_SUB_15_GenerateLayoutData
e Followed by T2_CME_SUB_18_CheckOverlap
Decision support
Frequency: Moderate to high - Performed for every time the Modeler wants to import an
existing XCML model (8 times per day). Average of 10 times per XCML imported.
Criticality: High. Use case T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML depends on
this use case.
Risk: High. This requires a sophisticated algorithm and data structure with heuristics to be

able to produce reasonable layout for potentially infinite many models.

131

Constraints:
Usability
e Internal to system.
Reliability
e Mean Time to Failure — 1 failure for every 120 hours of operation is acceptable.
Availability
e System should notify the user of a failure (incorrect format) gracefully without
aborting the program
Performance
e Must take less than .50 second.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
e Must be easily upgradeable to accommodate new shapes and objects.
Implementation

e C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 10/06/2008
Date Last Modified: 10/06/2008

10.2.1.18. Check Overlap
Use Case ID: T2_CME_SUB_18_CheckOverlap

Use Case Level: Functional Sub-use Case

Details
Actors: Modeler
Pre-conditions: Modeler is executing T2_CME_SUB_15_GenerateLayoutData. There is
at least one object with complete layout data in the list of layout information.
Description: The CME will check that there is no overlap between the objects already
placed (for which there is complete layout data).

132

Trigger: The Modeler has started the T2_CME_SUB_15_GenerateLayoutData use case.
This use case calls T2_CME_SUB_18_CheckOverlap to check that there is no overlap in
already placed shapes.
The system responds by ...
1. CME scans the layout data structure once to find if there is any overlap (by going
forward adding coordinates plus sizes until it gets to the current object).
2. CME returns the results of the scan done in step 1. (either NO OVERLAP or a list of
the shapes that OVERLAP)
Post-conditions: the calling use case now has the coordinates for the current object as
part of the layout data structure.
Alternative courses of action:
None.
Extensions:
None.
Exceptions:
e None.
Related use cases:
e C(Called by T2_CME_SUB_15_GenerateLayoutData
e Preceded by T2_CME_SUB_17_CalculateCoordinates
Decision support
Frequency: Moderate to high - Performed for every time the Modeler wants to import an
existing XCML model (8 times per day). Average of 10 times per XCML imported.
Criticality: High. Use case T2_CME_SYSE2E_10_ConvertFromXCMLtoGCML depends on
this use case.
Risk: Medium. This requires a somewhat complicated algorithm and data structure.
Constraints:
Usability
e Internal to system.
Reliability
e Mean Time to Failure — 1 failure for every 120 hours of operation is acceptable.

Availability

133

e System should notify the user of a failure (incorrect format) gracefully without
aborting the program
Performance
o Really fast. Must take less than .25 second.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
e Must be easily upgradeable to accommodate new shapes and objects.
Implementation
¢ (Client requests the implementation to be done in Java and the Eclipse framework.
Modification History:
Owner: Sandeep Varry
Initiation Date: 10/06/2008
Date Last Modified: 10/06/2008

10.2.1.19. Validate Model

Use Case ID: T2_CME_SYSE2E_19_ValidateModel
Use Case Level: System-Level End-to-End

Details
Actors: Modeler
Pre-conditions: Modeler has the Communication Modeling Environment (CME) open and
has an XCML file open in the XML editor of the CME (the XML text). Alternatively, the
use case can be called from “Validate Model from XCML File” and the file can be selected
in the file system.
Description: The CME will check that the current model is valid.
Trigger: The Modeler clicks in “Validate Model” button.
The system responds by ...
1. CME checks the model schema as defined in T2_CME_SUB_20_CheckModelSchema

use case.

134

2. CME checks the semantic rules as defined in
T2 _CME_SUB_21_CheckSemanticRules.
3. The CME compiles both step 1 and 2 results and presents a report to the Modeler
(either VALID or INVALID and list of the errors and warnings).
Post-conditions: the Modeler receives a report of the result of validation.
Alternative courses of action:
None.
Extensions:
None.
Exceptions:
e The same exceptions thrown by the sub use cases.
Related use cases:
e Uses T2 _CME_SUB_20_CheckModelSchema.
e Uses T2_CME_SUB_21_CheckSemanticRules.
Decision support
Frequency: Moderate - Performed for every time the Modeler wants to validate an XCML
model (10 times per day).
Criticality: High. The end product of CME must be a valid XCML model to be executed in
the CVM so validation is very important.
Risk: High. Dependent in correct implementation of the 2 sub use cases.
Constraints:
Usability
e No previous training needed.
Reliability
e Mean Time to Failure — 1 failure for every 60 hours of operation is acceptable.
Availability
e System should notify the user of a failure gracefully without aborting the program
Performance
e Really fast. Must take less than .50 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported

to any environment where Java can be installed.

135

e The set of rules is read at runtime so that new rules can be added to the repository
and the rest of the code does not have to change.
Implementation
¢ (Client requests the implementation to be done in Java and the Eclipse framework.
Modification History:
Owner: Lazaro Pi
Initiation Date: 10/06/2008
Date Last Modified: 10/08/2008

10.2.1.20. Check Model Schema

Use Case ID: T2 CME_SUB 20 CheckModelSchema

Use Case Level: Functional Sub-use Case

Details
Actors: Modeler
Pre-conditions: Modeler is executing T2_CME_SYSE2E_19_ValidateModel for a model in
XCML format. The XSD schema for XCML has been previously developed and saved in
the repository.
Description: The CME will check that the current model complies with XCML schema.
Trigger: The Modeler has started the T2_CME_SYSE2E_19_ValidateModel use case.
This use case calls T2_CME_SUB_20_CheckModelSchema to check that the model
complies with XCML schema.
The system responds by ...
1. CME reads the saved XSD schema definition for CML that is saved in the
repository.
2. CME uses the schema to validate the CML model.
3. CME returns the results of the validation done in step 2. (Either VALID or
INVALID with the list of errors).
Post-conditions: the calling use case now has the results of the schema validation.
Alternative courses of action:

None.

136

Extensions:
None.
Exceptions:
e The schema is not found in the repository; in this case, CME will issue an
appropriate error message and raise an exception back to the calling use case.
Related use cases:
e Called by T2_CME_SYSE2E_19_ValidateModel
e Followed by T2_CME_SUB_21_CheckSemanticRules
Decision support
Frequency: Moderate - Performed for every time the Modeler wants to validate an XCML
model (10 times per day).
Criticality: High. The end product of CME must be a valid XCML model to be executed in
the CVM so schema validation is very important.
Risk: Medium. This requires a previously correct schema definition to be developed. The
actual validation can be accomplished with standard API calls.
Constraints:
Usability
e Internal to system.
Reliability
e Mean Time to Failure — 1 failure for every 120 hours of operation is acceptable.
Availability
e System should notify the user of a failure gracefully without aborting the program
Performance
e Really fast. Must take less than .50 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation
e C(Client requests the implementation to be done in Java and the Eclipse framework.
Modification History:
Owner: Manasa Bharadwaj

Initiation Date: 10/06/2008

137

Date Last Modified: 10/06/2008

10.2.1.21. Check Semantic Rules

Use Case ID: T2 CME_SUB 21 CheckSemanticRules

Use Case Level: Functional Sub-use Case

Details
Actors: Modeler
Pre-conditions: Modeler is executing T2_CME_SYSE2E_19_ValidateModel for a model in
XCML format. There are a group of previously defined semantic rules saved in the
repository.
Description: The CME will check that the current model complies with the defined
semantic rules (for an example of the possible set of rules to be checked see “Appendix E
— Example of Semantic Rules”).
Trigger: The Modeler has started the T2_CME_SYSE2E_19_ValidateModel use case.
This use case calls T2_CME_SUB_21_CheckSemanticRules to check that the model
complies with the previously defined semantic rules (the calling use case passes the
XCML model as a data structure of in-memory CML objects as parameter).
The system responds by ...

1. CME reads the saved semantic rules into a custom data structure of rules where
each item contains the definition of the rule and a reference to the piece of code that
needs to be executed to check if the model complies with the rule (see “Appendix E —
Example of Semantic Rules”).

2. For each of the rules, CME executes the relevant rule code (the CML data structure
is passed as parameter) and accumulates the results in a list.

3. CME returns the results of the validation done in step 2. (Either VALID or
INVALID with the list of errors and warnings).

Post-conditions: the calling use case now has the results of the semantic validation.
Alternative courses of action:
None.

Extensions:

None.

138

Exceptions:
e The schema is not found in the repository; in this case, CME will issue an
appropriate error message and raise an exception back to the calling use case.
Related use cases:
e Called by T2_CME_SYSE2E_19_ValidateModel
e Preceded by T2_CME_SUB_20_CheckModelSchema
Decision support
Frequency: Moderate - Performed for every time the Modeler wants to validate an XCML
model (10 times per day).
Criticality: High. The end product of CME must be a valid XCML model to be executed in
the CVM so semantic validation is very important.
Risk: High. This requires a previously correct set of semantic rules to be developed. It also
needs a custom data structure and algorithm to execute the set of rules and return the
results to the calling code.
Constraints:
Usability
e Internal to system.
Reliability
e Mean Time to Failure — 1 failure for every 60 hours of operation is acceptable.
Availability
e System should notify the user of a failure gracefully without aborting the program
Performance
e Really fast. Must take less than .50 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
o The set of rules is read at runtime so that new rules can be added to the repository
and the rest of the code does not have to change.
Implementation
¢ (Client requests the implementation to be done in Java and the Eclipse framework.
Modification History:

Owner: Lazaro Pi

139

Initiation Date: 10/06/2008
Date Last Modified: 10/06/2008

10.2.1.22. Print Model

Use Case ID: T2_CME_SYSE2E_22_PrintModel
Use Case Level: System-Level End-to-End

Details
Actors: Modeler
Pre-conditions: Modeler has the Communication Modeling Environment (CME) open and
has loaded the Model he wants to print into the canvas.
Description: The Modeler will print the open model.
Trigger: The Modeler clicks the “Print” button in the tool bar of the CME.
The system responds by ...
1. CME presents the Standard Windows Print Dialog.
2. The Modeler accepts the defaults and clicks the “Print” button.
3. The system will then send the printing job to default printer.
4. The default printer finishes printing the model.
Post-conditions: a copy of the model has been printed in the default printer and the
model is still open in the editor and ready to be edited.
Alternative courses of action:
At step 2 the user can select any printing preferences from the open dialog box (.e.
number of copies, pages, printer selected, etc.).
Before step 3 the Modeler has the option to cancel the print request by pressing “Cancel”
button.

Extensions:
None.
Exceptions:
e The system could not find any printers connected to the workstation.
e The printer could have a paper jam.

e The printer could run out of paper or ink.

140

Related use cases:
o T2_CME_SYSE2E_05_OpenExistingGCMLModel
Decision support
Frequency: Low. Only when ME user wants to print a hard copy of the model (graphical)
about 5 times per day.
Criticality: Low. Printing is not necessary to realize the communications model.

Risk: Low. Straightforward implementation using standard API calls.

Constraints:
Usability
o No previous training is needed.
Reliability
e Mean Time to Failure — 1 failure for every 40 hours of operation is acceptable.
Availability
¢ Only when model is loaded
Performance
e The model shall be sent to the printer within 5 seconds. Further performance
limited by the printer capacity and load (queue of jobs being printed).
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

e C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Jorge Jauregui
Initiation Date: 09/18/2008
Date Last Modified: 09/24/2008

10.2.1.23. Edit Model Metadata

Use Case ID: T2_CME_SYSE2E_23_EditModelMetadata
Use Case Level: System-Level End-to-End

141

Details
Actors: Modeler
Pre-conditions: Modeler has the Communication Modeling Environment (CME) open.
Description: The Modeler will edit the additional metadata that describes an existing
model.
Trigger: The Modeler clicks the “Models Administration” menu item in the CME.
The system responds by ...
1. CME presents the Models Administration Window.
2. The Modeler selects the desired model from the Models list box.
3. The CME selects the entry in the window.
4. Modeler edits the name, description, and available formats into the appropriate text

boxes.

o

The Modeler clicks “Change” to accept the changes made to this entry.
6. The Modeler clicks “Save” button.

~

The CME system saves the modified entry into the repository data structure and
saves a copy of the model into the internal repository folder.
Post-conditions: the modified model entry is saved in the repository data structure.
Alternative courses of action:
At steps 2 to 5 the Modeler can hit “Cancel” button to cancel the edition of the entry.
Extensions:
None.
Exceptions:
e The Modeler can enter a name that already exists. The CME will warn the modeler
that this action will overwrite the exiting model.
Related use cases:
o T2_CME_SYSE2E_11_AddModelToRepository
Decision support
Frequency: Moderate - Performed for every time the Modeler wants to edit a model entry in
the repository (10 times per day).
Criticality: Medium — although requiring more work, the Modeler can delete the entry and

add it again to accomplish the same results.

142

Risk: Medium

Constraints:
Usability
e No previous training is needed.
Reliability
e Mean Time to Failure — 1 failure for every 24 hours of operation is acceptable.
Performance
e The model metadata entry shall be saved within 2 seconds.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

e C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/18/2008
Date Last Modified: 10/04/2008

10.2.1.24. Login

Use Case ID: T2_CME_SYSE2E_24_lLogin
Use Case Level: System-Level End-to-End

Details
Actors: User
Pre-conditions: The user has the CME installed and has access to the Repository. He is
currently not using the CME.
Description: The user wishes to access the system.
Trigger: The user starts the application by click on the application icon.
The system responds by ...
1. CME displays the login dialog prompting the user to enter his credentials.

143

2. The user types his credentials and clicks OK.
3. The system retrieves the typed information and compares it with the user’s
credentials stored in the repository.
4. The CME displays the user’s main screen.
Post-conditions: After this use case is complete the CME is open and the user is ready to
interact with the system.
Alternative courses of action:
At step 2 the user has the option to cancel the login request by pressing “Cancel” button.

Then the application is closed.

Extensions:
None.
Exceptions:
e The user can provide erroneous credentials.

e A connection to the repository could not be established.

Related use cases:
e Protects against T2_CME_MISUSE_01_UnauthorizedAccess
e Uses T2_CME_SUB_31_SuspendUserAccountAfterNAttempts
o T2_CME_SYSE2E_25_Logout
e T2 CME_SYSE2E_33_UnlockApplication

Decision support

Frequency: Moderate. This needs to be done every time the system is started (about 8 times
per day).

Criticality: High. The CME must be secured so that unauthorized use is prevented.

Risk: Medium. Implementation is easy but must account for misuse so that credentials

information must be secured.

Constraints:
Usability

o No previous training is needed.

144

Reliability

e Mean Time to Failure — 1 failure for every 80 hours of operation is acceptable.
Performance

e User must be able to access the system within 3 seconds of pressing the OK button.
Supportability

e The application will rely on the Java platform (version 5 or later) so it can be ported

to any environment where Java can be installed.

Implementation

¢ (Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/18/2008
Date Last Modified: 09/27/2008

10.2.1.25. Logout

Use Case ID: T2_CME_SYSE2E_25_Logout
Use Case Level: System-Level End-to-End

Details
Actors: User
Pre-conditions: The user has the CME open and running.
Description: The user wishes to exit the system.
Trigger: The user clicks on the “Exit” button.
The system responds by ...
1. CME displays the logout dialog prompting the user to confirm the operation or
cancel.
2. The user clicks on the OK button confirming the action.
3. The system terminates all processes and closes.
Post-conditions: After this use case is complete the user has left the system.

Alternative courses of action:

145

At step 1, if the work in progress is not saved, the system displays a dialog box asking if
he wants to save with a “Save”, “Don't Save” and “Cancel” buttons.

a- If the user presses “Save”, the work in progress is saved and use case proceeds.

b- If the user presses “Don't save”, the dialog box is closed and use case proceeds.

c- If the user presses “Cancel” the use case ends.
At step 2, the user can decide to cancel the action; this cancels the execution of the use

case, in which case he would continue to use the CME.

Extensions:
e None.
Exceptions:
e None.
Related use cases:
e T2 _CME_SYSE2E_24_lLogin
e T2_CME_SYSE2E_32_LockApplication
e Protects against T2_CME_MISUSE_02_UnauthorizedUseOfRunningApplication

Decision support

Frequency: Moderate. This needs to be done every time the system is closed (about 8 times
per day).

Criticality: Moderate. The CME must be secured so that unauthorized use is prevented.

Risk: Low. Straightforward implementation.

Constraints:
Usability
e No previous training is needed.
Reliability
e Mean Time to Failure — 1 failure for every 160 hours of operation is acceptable.
Performance
e User must be able to exit the system within 2 seconds of pressing the OK button.

Supportability

146

e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

¢ C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/18/2008
Date Last Modified: 09/27/2008

10.2.1.26. Create Mirror Backup of Repository

Use Case ID: T2_CME_SYSE2E_26_CreateMirrorBackupOfRepository
Use Case Level: System-Level End-to-End

Details
Actors: Administrator
Pre-conditions: The administrator has logged into the system and is on the system
configuration screen (CME Administrative tool).
Description: The user wishes to set the automatic back up feature.
Trigger: The administrator clicks administrator clicks on the “Repository Settings”
option.
The system responds by ...
1. CME displays the Repository Settings Window.
2. Under the “Mirror Options”, the user clicks on the button “Mirror now”.
3. The system copies the contents of the repository to another hidden location
(configurable from this same screen).
Post-conditions: After this use case is complete the default repository and the mirror
repository contain the exact same information and files.
Alternative courses of action:
At step 2, the administrator has the option to set a recurring time in which the

repository will be mirrored (for example, daily).

147

Extensions:
None.

Exceptions:

e A connection to the repository could not be established.

e The file system throws an error while copying files (i.e. out of space)
Related use cases:

o Protects against T2_CME_MISUSE_01_UnauthorizedAccess
Decision support
Frequency: Low. The system can be configured so that the mirroring can occur once a day
at a specific time. The administrator can mirror the repository at any time also. The
repository will be mirrored on average once a day.
Criticality: High. The repository data is very valuable and must be protected against
malicious or accidental deletion.

Risk: Low. Uses standard system calls to copy the files.

Constraints:
Usability
e No previous training is needed.
Reliability
e Mean Time to Failure — 1 failure for every 160 hours of operation is acceptable.
Availability
e Should always be available to the administrator. Down time of the CME fewer than
30 minutes every 80 hours of operation.
Performance
e User must be able to schedule backup within 2 seconds of clicking the “Mirror Now”
option. Time to complete the mirror backup Depends on the computer the system is
located in and the time it takes to copy files from one location to another.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

¢ C(Client requests the implementation to be done in Java and the Eclipse framework.

148

Modification History:

Owner: Jorge Jauregui
Initiation Date: 09/18/2008
Date Last Modified: 09/30/2008

10.2.1.27. Encrypt Sensitive Data

Use Case ID: T2_CME_SYSE2E_27_EncryptSensitveData
Use Case Level: System-Level End-to-End

Details
Actors: User
Pre-conditions: The administrator has logged into the system and is on the system
configuration screen (CME Administrative tool).
Description: The user wishes to set the automatic back up feature.
Trigger: The administrator or a modeler is editing authorized user record in the
repository such as creating user or changing the password. After all changes, the user
clicks “Save”.
The system responds by ...
1. CME selects the group of attributes marked as sensitive (for example, user name
and password).
2. CME encrypts the selected attributes and returns the list with the corresponding
encrypted equivalents.
3. CME saves the records in the repository with the sensitive attribute values replaced
by the encrypted equivalents.
4. Now any user or misuser reading the repository files will not be able to decode the
sensitive information since it is encrypted.
Post-conditions: Sensitive attribute values are encrypted in the repository file (one-way
encryption).
Alternative courses of action:

None.

149

Extensions:
None.

Exceptions:

e A connection to the repository could not be established.

e The file system throws an error while copying files (i.e. out of space)
Related use cases:

o Protects against T2_CME_MISUSE_04_ReadSensitiveDatalnRepository

e Authorize Data Reads through the CME system will decrypt the sensitive data.
Decision support
Frequency: Moderate to low. About 20 times per week
Criticality: High. The repository data is very valuable and must be protected against
malicious users.

Risk: Low. Uses standard encryption algorithms

Constraints:
Usability
e No previous training is needed.
Reliability
e Mean Time to Failure — 1 failure for every 160 hours of operation is acceptable.
Availability
e Should always be available to the administrator. Down time of the CME fewer than
30 minutes every 80 hours of operation.
Performance
e CME will take less than .005 seconds to encrypt sensitive data.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

¢ C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Jorge Jauregui

150

Initiation Date: 09/18/2008
Date Last Modified: 10/08/2008

10.2.1.28. Create Authorized User Account

Use Case ID: T2 CME_SYSE2E 28 CreateAuthorizedUserAccount
Use Case Level: System-Level End-to-End

Details
Actors: Administrator
Pre-conditions: A new user has to be added to the system. The administrator is logged to
the system.
Description: The user wishes to access the system.
Trigger: The administrator clicks on the “Add New User” in the CME administrative
tool.
The system responds by ...
1. CME displays the Add New User dialog box.
2. The administrator enters the user ID, full name, and default password, he also sets
the role as Modeler.
3. Administrator clicks Add User.
4. The system saves the new user.
5. The CME displays the Administrative tool main screen.
Post-conditions: After this use case is complete the new user has been saved into the
CME repository.
Alternative courses of action:
At step 3 and before, the administrator has the option to cancel the request by pressing

“Cancel” button. Then the use case is aborted and CME displays the previous screen.

Extensions:
None.
Exceptions:

e A connection to the repository could not be established.

151

Related use cases:
e Protects against T2_CME_MISUSE_01_UnauthorizedAccess
o T2 _CME_SYSE2E_24_lLogin
o T2_CME_SYSE2E_30_DeleteUserAccount
Decision support
Frequency: Low. This needs to be done every time a new user is added. About 10 times per
month
Criticality: High. The CME must be secured so that unauthorized use is prevented.
Risk: Medium. Implementation is easy but must account for misuse so that credentials

information must be secured.

Constraints:
Usability
e No previous training is needed.
Reliability
e Mean Time to Failure — 1 failure for every 160 hours of operation is acceptable.
Performance
e User must be able to access the system within 3 seconds of pressing the Add User
button.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

¢ (Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Sandeep Varry
Initiation Date: 09/18/2008
Date Last Modified: 09/27/2008

152

10.2.1.29. Change User Account Password

Use Case ID: T2_CME_SYSE2E_29_ ChangeUserAccountPassword
Use Case Level: System-Level End-to-End

Details

Actors: User

Pre-conditions: A new user has been added to the system.

Description: The user wishes to access the system.

Trigger: The user logs into the system for the first time as specified in Login use case.

The system responds by ...

1.
2.

3.
4.
5.

CME displays a “First Time login change password” dialog box.

The user enters the “old password”, “new password” and “confirm new password”
values in the appropriate text boxes.

User clicks Change Password button.

The system saves the new password.

The CME displays the main screen.

Post-conditions: After this use case is complete the new password has been saved to the

repository.

Alternative courses of action:

The trigger can also be that the user clicks the Change password button in the CME

main window.

The CME system can also be configured by an administrator so that it prompts to change

the password after certain amount of time (for example, every 30 days).

At step 3, the CME can issue an error back to the user and prompts for the password

again if new password and confirm new password are different or if old password is equal

to new password.

Extensions:

None.

Exceptions:

A connection to the repository could not be established.

Related use cases:

153

e Protects against T2_CME_MISUSE_05_AccessSystemWithStolenCredentials
e T2 _CME_SYSE2E_24_Login

Decision support

Frequency: Moderate. This needs to be done every time a new user is added or when the
user requests it. It will be executed about 30 times per month (once per user). The
administrator can set a time period before the password has to be changed.

Criticality: High. The CME must be secured so that unauthorized use is prevented.

Risk: Medium. Implementation is easy but must account for misuse so that credentials

information must be secured.

Constraints:
Usability
o No previous training is needed.
Reliability
e Mean Time to Failure — 1 failure for every 160 hours of operation is acceptable.
Performance
e User must be able to access the system within 3 seconds of pressing the Change
Password button.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

¢ Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Manasa Bharadwaj
Initiation Date: 09/18/2008
Date Last Modified: 10/08/2008

10.2.1.30. Delete User Account
Use Case ID: T2 CME_SYSE2E_30_DeleteUserAccount

154

Use Case Level: System-Level End-to-End

Details
Actors: Administrator
Pre-conditions: A user has to be deleted from the system. The administrator is logged to
the system.
Description: The administrator wishes to revoke access the system to a user.
Trigger: The administrator selects the user he wants to delete in the CME
administrative tool.
The system responds by ...

1. CME selects the user and shows the user details.

2. Administrator clicks on the “Delete This User”.

3. CME deletes the account; the system no longer recognizes the user account as valid;
the user will not be allowed to log back into the system; the user account will be
permanently deleted.

4. The CME displays the Administrative tool main screen.

Post-conditions: After this use case is complete the user account has been permanently
deleted from the CME repository.
Alternative courses of action:
At step 2 and before, the administrator has the option to cancel the request by pressing
“Cancel” button. Then the use case is aborted and CME displays the previous screen.
Extensions:
None.
Exceptions:

e A connection to the repository could not be established.

Related use cases:
e Protects against T2_CME_MISUSE_06_AccessSystemWithExpiredCredentials
e T2 _CME_SYSE2E_24 lLogin
e T2 CME_SYSE2E 28 CreateAuthorizedUserAccount

Decision support

155

Frequency: Low. This needs to be done every time a new user is added. About 10 times per
month

Criticality: High. The CME must be secured so that unauthorized use is prevented.

Risk: Medium. Implementation is easy but must account for misuse so that credentials

information must be secured.

Constraints:
Usability
o No previous training is needed.
Reliability
e Mean Time to Failure — 1 failure for every 160 hours of operation is acceptable.
Performance
e User must be able to access the system within 3 seconds of pressing the Add User
button.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

¢ Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Manasa Bharadwaj
Initiation Date: 09/18/2008
Date Last Modified: 09/27/2008

10.2.1.31. Suspend User Account after n attempts

Use Case ID: T2_CME_SUB_31_SuspendUserAccountAfterNAttempts

Use Case Level: Functional Sub-use Case

Details
Actors: User / Hacker

156

Pre-conditions: The administrator has set up the MaxLoginAttempts configuration
setting (n <= [3..7]).

Description: The user / hacker wishes to access the system. As part of the Login use case
the CME keeps a count of how many times somebody has tried to access the system
unsuccessfully.

Trigger: After entering credentials the user / hacker clicks OK (see Login use case).

The system responds by ...

1. The System does not allow the user / hacker to login as he entered wrong

credentials.
2. CME displays error message and informs how many attempts left before suspending
account.
3. The user or hacker enters different password and then he clicks OK.
4. Previous steps are repeated n times (n = MaxLoginAttempts).
5. The CME suspends the user account and does not allow any more attempts to
login.
Post-conditions: The user or hacker is not able to get access the system. The account has
been suspended and only an administrator can restore access to that account.
Alternative courses of action:
At step 2 the hacker enters a different user id, and then the CME starts counting

attempts for the new id.

Extensions:
e None.
Exceptions:
e A connection to the repository could not be established.
Related use cases:
o T2 _CME_SYSE2E_24_lLogin
e Protects against T2_CME_MISUSE_07_AccessSystemAfterManyAttempts

Decision support
Frequency: Moderate. This needs to be done every time the system is started (about 8 times

per day).

157

Criticality: High. The CME must be secured so that unauthorized use is prevented.
Risk: Medium. Implementation is easy but must account for misuse so that credentials

information must be secured.

Constraints:
Usability

¢ No previous training is needed.
Reliability

e Mean Time to Failure — 1 failure for every 160 hours of operation is acceptable.
Performance

e User must be able to access the system within 3 seconds of pressing the OK button.
Supportability

e The application will rely on the Java platform (version 5 or later) so it can be ported

to any environment where Java can be installed.

Implementation

¢ Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Sandeep Varry
Initiation Date: 09/18/2008
Date Last Modified: 09/28/2008

10.2.1.32. Lock Running Application

Use Case ID: T2_CME_SYSE2E_32_LockRunningApplication
Use Case Level: System-Level End-to-End

Details
Actors: User

Pre-conditions: The user has the CME open and running.

158

Description: The user wishes to lock the system without closing it.
Trigger: The user clicks on the “Lock” button.
The system responds by ...
1. CME displays the Lock dialog prompting the user to confirm the operation or cancel.
2. The user clicks on the OK button confirming the action.
3. The system hides the main window and presents the “Unlock CME” Dialog box
instead.
Post-conditions: After this use case is complete the main window is hidden and the only
available function is a dialog box to unlock the application.
Alternative courses of action:
At step 1, if the work in progress is not saved, the system displays a dialog box asking if
he wants to save with a “Save”, “Don't Save” and “Cancel” buttons.
d- If the user presses “Save”, the work in progress is saved and use case proceeds.
e- If the user presses “Don't save”, the dialog box is closed and use case proceeds.
f- If the user presses “Cancel” the use case ends.
At step 2, the user can decide to cancel the action; this cancels the execution of the use
case, in which case he would continue to use the CME.
The CME can be configured by an administrator so that lock is automatic after a certain
amount of time of being inactive (for example, after 10 minutes of inactivity).
Extensions:
e Extended by T2_CME_SYSE2E_33_UnlockApplication
Exceptions:
e None.
Related use cases:
e T2 CME_SYSE2E_25 Logout
o Protects against T2_CME_MISUSE_02_UnauthorizedUseOfRunningApplication
e Extended by T2_CME_SYSE2E_33_UnlockApplication

Decision support
Frequency: Moderate. This needs to be done every time the system is locked (about 8 times
per day).

Criticality: Moderate. The CME must be secured so that unauthorized use is prevented.

159

Risk: Low. Straightforward implementation.

Constraints:
Usability

e No previous training is needed.
Reliability

e Mean Time to Failure — 1 failure for every 160 hours of operation is acceptable.
Performance

e User must be able to exit the system within 2 seconds of pressing the OK button.
Supportability

e The application will rely on the Java platform (version 5 or later) so it can be ported

to any environment where Java can be installed.

Implementation

e C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/18/2008
Date Last Modified: 10/08/2008

10.2.1.33. Unlock Application

Use Case ID: T2_CME_SYSE2E_33_UnlockApplication
Use Case Level: System-Level End-to-End

Details
Actors: User
Pre-conditions: The user previously locked the CME.
Description: The user wishes to unlock the system.
Trigger: The user clicks on the “Unlock” button in the “Unlock CME” dialog box.
The system responds by ...

160

1. Presenting a variation of the login dialog box where the user name is read only and
the user must enter the password. The steps to authorize the user back are similar
to login use case.

2. The user enters password and clicks OK.

3. The system shows the previously hidden main window so that the user can resume
work.

Post-conditions: After this use case is complete the main window is restored an the user
is back where he left before locking the application.
Alternative courses of action:
At step 2, the user can enter a wrong password; this behaves exactly as explained in the
login use case.
Extensions:
o Extends T2_CME_SYSE2E_32_LockRunningApplication
Exceptions:
e None.
Related use cases:

e T2 _CME_SYSE2E_24_Login

o Protects against T2_CME_MISUSE_02_UnauthorizedUseOfRunningApplication

e Extends T2_CME_SYSE2E_32_ LockRunningApplication

Decision support

Frequency: Moderate. This needs to be done every time the system is locked (about 8 times
per day).

Criticality: Moderate. The CME must be secured so that unauthorized use is prevented.

Risk: Low. Straightforward implementation.

Constraints:
Usability
e No previous training is needed.
Reliability
e Mean Time to Failure — 1 failure for every 160 hours of operation is acceptable.

Performance

161

e User must be able to exit the system within 2 seconds of pressing the OK button.
Supportability
e The application will rely on the Java platform (version 5 or later) so it can be ported
to any environment where Java can be installed.
Implementation

¢ C(Client requests the implementation to be done in Java and the Eclipse framework.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/18/2008
Date Last Modified: 10/08/2008

10.2.2. Misuse Case Descriptions

The misuse cases identify security threats against the system. Use cases to prevent those

threats have been presented in the previous section.

The relation between the misuse cases and the security use cases described in previous
section is expressed in the “Related use cases” subtitle of the use case description. In the
misuse case there is an entry preceded with “Prevented by ...”; In the security use case

there is an entry preceded by “Protects against ...”.

The same conventions apply for the creation of the misuse case ID’s as for the use cases.

The only difference is the addition of the MISUSE tag to identify this as a misuse case.

10.2.2.1. Unauthorized Access

Use Case ID: T2. CME_MISUSE 01 _UnauthorizedAccess

Use Case Level: Misuse Case

Details

162

Actors: Hacker
Pre-conditions: The hacker has gained access to a computer where the CME 1is installed.
Description: Hacker wants to use the CME application.
Trigger: The Hacker clicks on the application icon in order to run the application.
The system responds by ...
1. The System does not perform any authentication.
2. The CME displays the user’s main screen.
Post-conditions: After this misuse case is complete the CME is open and the hacker is
ready to interact with the system.
Alternative courses of action:
e None.
Extensions:
e None.
Exceptions:
e A connection to the repository could not be established.
Related use cases:
e Prevented by T2_CME_SYSE2E_23_Login
e Prevented by T2_CME_SYSE2E_27_ CreateAuthorizedUserAccount

Decision support

Frequency: Moderate. Hackers attempt this misuse around 20 times per week.
Criticality: High. The CME must be secured so that unauthorized use is prevented.
Risk: Medium.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/18/2008
Date Last Modified: 09/28/2008

10.2.2.2. Unauthorized Use of Running Application

Use Case ID: T2_CME_MISUSE_02_UnauthorizedUseOfRunningApplication

163

Use Case Level: Misuse Case

Details
Actors: Hacker
Pre-conditions: The hacker has gained access to a computer where the CME is installed.
The CME application was left open and running by a user.
Description: Hacker wants to use the CME application.
Trigger: The Hacker clicks on window representing the CME.
The system responds by ...
1. The CME displays the user’s main screen.
Post-conditions: After this misuse case is complete the CME is open and in focus and the
hacker is ready to interact with the system.
Alternative courses of action:
e None.
Extensions:
e None.
Exceptions:
e None.
Related use cases:
e Prevented by T2_CME_SYSE2E_24 Logout
e Prevented by T2_CME_SYSE2E_31_LockRunningApplication

Decision support

Frequency: Moderate. Hackers attempt this misuse around 20 times per week.
Criticality: High. The CME must be secured so that unauthorized use is prevented.
Risk: Medium.

Modification History:

Owner: Lazaro Pi

Initiation Date: 09/18/2008
Date Last Modified: 09/28/2008

164

10.2.2.3. Delete Data in Repository

Use Case ID: T2_CME_MISUSE_03_DeleteDatalnRepository

Use Case Level: Misuse Case

Details
Actors: Hacker
Security Threat: All work done on pre-existing communication models can easily be
deleted with no way of recovery.
Pre-conditions: The Hacker has gained access to the repository.
Description: Attempted deletion of all X-CML and G-CML files in the repository.
Trigger: The Hacker highlights (selects) all the files in the repository and drags them
into the recycling bin / trash.
The system responds by ...
1. All files are sent to the Trash.
2. Hacker empties the recycling bin / trash.
3. The system deletes the files from the Trash folder.
Post-conditions: After this misuse case is complete all repository files are deleted and the
repository is empty. The users of the CME system cannot recover the deleted files.
Alternative courses of action:
e None.
Extensions:
e None.
Exceptions:
e None.
Related use cases:
e Prevented by T2_CME_SYSE2E_26_CreateMirrorBackupOfRepository
Decision support
Frequency: Moderate. Hackers attempt this misuse around 10 times per week.
Criticality: High. The CME must protect Repository data.
Risk: Medium.

165

Modification History:

Owner: Jorge Jauregui
Initiation Date: 09/18/2008
Date Last Modified: 09/30/2008

10.2.2.4. Read Sensitive Data in Repository

Use Case ID: T2_CME_MISUSE_04_ReadSensitiveDatalnRepository

Use Case Level: Misuse Case

Details
Actors: Hacker

Security Threat: Misuser has all the access privileges of a valid user and can perform

actions on behalf of that user.

Pre-conditions: The Hacker has gained access to the repository.

Description: Hacker obtains sensitive data such as user name and passwords from files

in the repository.

Trigger: The Hacker clicks open for all the files in the repository.

The system responds by ...

1.
2.
3.

4.
5.

Files are open in a text editor.

For each of the files, Hacker searches through the file for a username and password.
When he finds the appropriate attributes, hacker copies the user name and
password.

Hacker enters this information on the logon screen of the CME.

CME grants access to the Hacker and lets him log in.

Post-conditions: After this misuse case is complete the application positively

authenticates the Hacker as a valid user and gives him/her access to the system.

Alternative courses of action:

None.

Extensions:

None.

Exceptions:

None.

166

Related use cases:
e Prevented by T2_CME_SYSE2E_27_EncryptSensitveData
Decision support
Frequency: Moderate. Hackers attempt this misuse around 10 times per week.
Criticality: High. The CME must protect Repository data.
Risk: Medium.

Modification History:

Owner: Jorge Jauregui
Initiation Date: 09/18/2008
Date Last Modified: 10/08/2008

10.2.2.56. Access System with Stolen Credentials
Use Case ID: T2_CME_MISUSE_05_AccessSystemWithStolenCredentials
Use Case Level: Misuse Case
Details
Actors: Hacker
Pre-conditions: The hacker has obtained valid user credentials and has access to a
computer where the CME is installed. The hacker has a username and password which
he/she has gained through some unknown means (social engineering, etc.).
Security Threat: Hacker has all the access privileges of a valid user and can perform
actions on behalf of that user.
Description: Hacker wants to use the CME application.
Trigger: The Hacker clicks on the application icon in order to run the application.
The system responds by ...
1. The System performs authentication as explained in login use case.
2. Hacker is given access since the credentials he supplies are valid.
3. The CME displays the user’s main screen.
Post-conditions: The Hackers is allowed to login to some authorized users account. After
this misuse case is complete the CME is open and the hacker is ready to interact with
the system.

Alternative courses of action:

167

e None.
Extensions:

e None.
Exceptions:

e A connection to the repository could not be established.
Related use cases:

e Prevented by T2_CME_SYSE2E_ 29 ChangeUserAccountPassword
Decision support
Frequency: Moderate. Hackers attempt this misuse around 20 times per week.
Criticality: High. The CME must be secured so that unauthorized use is prevented.
Risk: Medium.

Modification History:

Owner: Lazaro Pi, Sandeep Varry, Jorge Jauregui
Initiation Date: 09/18/2008

Date Last Modified: 10/08/2008

10.2.2.6. Access System with Expired Credentials
Use Case ID: T2_CME_MISUSE_06_AccessSystemWithExpiredCredentials
Use Case Level: Misuse Case
Details
Actors: Hacker
Pre-conditions: The hacker has obtained expired user credentials and has access to a
computer where the CME is installed. For example, the hacker can be a fired employee
that has not been deleted from the list of authorized users.
Security Threat: Hacker has all the access privileges of a user.
Description: Hacker wants to use the CME application.
Trigger: The Hacker clicks on the application icon in order to run the application.
The system responds by ...
1. The System performs authentication as explained in login use case.
2. Hacker is given access since the credentials he supplies are valid.

3. The CME displays the user’s main screen.

168

Post-conditions: After this misuse case is complete the CME is open and the hacker is
ready to interact with the system.
Alternative courses of action:
e None.
Extensions:
e None.
Exceptions:
e A connection to the repository could not be established.
Related use cases:
e Prevented by T2_CME_SYSE2E_30_DeleteUserAccount
Decision support
Frequency: Moderate. Hackers attempt this misuse around 20 times per week.
Criticality: High. The CME must be secured so that unauthorized use is prevented.
Risk: Medium.

Modification History:

Owner: Lazaro Pi, Sandeep Varry, Jorge Jauregui
Initiation Date: 09/18/2008

Date Last Modified: 10/08/2008

10.2.2.7. Access System after Many Login Attempts

Use Case ID: T2_CME_MISUSE_07_AccessSystemAfterManyAttempts

Use Case Level: Misuse Case

Details
Actors: Hacker
Pre-conditions: The hacker has gained access to a computer where the CME 1is installed.
Description: Hacker tries repeatedly to login to one of the authorized users account.
Trigger: The Hacker enters user id and password and tries to login to one of the

registered users account (see Login use case).

169

The system responds by ...
1. The System does not allow the hacker to login as he entered wrong credentials.
2. CME displays error message.
3. The hacker enters different id and/or password and then he clicks OK.
4. Previous steps are repeated until the hacker enters correct id and password and gets
access to the system.
Post-conditions: The hacker successfully logs into some authorized users account.
Alternative courses of action:
The hacker can use a malicious application to generate different ID’s and passwords to

automate the attack on the system.

Extensions:
e None.
Exceptions:
¢ A connection to the repository could not be established.
Related use cases:
e T2 _CME_SYSE2E_23_Login
e Prevented by T2_CME_SUB_30_SuspendUserAccountAfterNAttempts

Decision support

Frequency: Low. Hackers attempt this misuse around 10 times per week.

Criticality: High. The CME must be secured so that unauthorized use is prevented.

Risk: Medium. Implementation is easy but must account for misuse so that credentials

information must be secured.

Modification History:

Owner: Sandeep Varry
Initiation Date: 09/18/2008
Date Last Modified: 09/28/2008

170

10.3. Appendix C — User Interface Design

Login popup window

Login - RRComSSys

A

Usemame:
||:hatalnt |

Pazgword:

Figure 30 UI, Login

Administrative Window for editing Users

171

B Users Administration Screen - CME

lszers

Selected User

:T'E"'CEI Iser Mame: User Role

wong -

manasa |Iazan:u|:u| |) Modeler
::Qg:;p Full Name: %) Administrator
jorgej |Lazan:| Pi |

clatkep

Encrypted Passwond:
|{3{I. 182, 253, 35, 78. 95. 26, 223, 234, 53, 58. 135, 165. 79, 175. 'E| MNew Passward

[Delete This User] l Add New User] [Save] [Cancel]

Figure 31 Ul, Administrative Window for editing users

B Users Administration Screen - CME

lszers

lzzaropi Selected User

marcg Iser Mame: User Role

lwon

T — v | ® Modeler
fgggr?; i S) Administrator
jorgei |Manasa Bharadwai |

clatkep

Encrypted Passwond:
|{24?. 53. 206. 132, 130. 177. 204. 151, 203. 52. 20. 164. 156, 48. 2| MNew Passward

[Delete This User] l Add New User] [Save] [Cancel]

Figure 32 Ul, editing users

172

Administrative Window for editing Models Metadata

B Models Administration Screen - CME

Models
Voi Selected Model
nice

File: Model Mame:

Chat Fil Ch

Woice Connection 1 - default | = — | =

group chat model 1 - default Description:

Chat -Vaice - File |Send File to another user |
Path (&l paths relative to the repositony):
|\Models\fi|e.rrcomss'_.rs |
Urique 10: Available Formats
|_TTkPQAGEd2Z Uoyisw\iQg | [GemL KCML

| Delete Model | [Add Model Entry | | Impott Model To Repository | Save | | Cancel |

Figure 33 Ul, editing metadata
L X I]

173

Model for with simple lines and shapes

ndmap_diagram - Eclipse Plal

File Edit Diagram MNavigate Search Project Run Window Help

[i\‘_*/ Project Explorer 23_ i] m > default.mindmap
BEl &~ ‘LTSP‘al;tte:
= 1 sasa E ZEE
& 5] defaultmindmap 3, Zoom
&+ 4+ Document Root B o [=) Note:
-4 Map |4 amf discussion s
L4 Topicgl | 4 TopicSubtopics
< Topicg2

4 Topic gmf discussion
=[] default.mindmap_diagram
&4 nul
-4 gl
| B (# incoming nks
-4 g2
& (% incoming links ¥ _u .
B4 gmf discussion |¢ gt | [+ g2 ‘
(% outgaing links ‘
-6 links o
&4
4

(21 Prablems ES"_E] Tas‘a] B Properhas" 4k Servers} ¥ Datz Source Eq:llerer‘\ [Srippets |
0 errors, 0 warnings, 0 infos

it

= =0

Description » Resource Path Location

e @

Figure 34 Model with simple lines and shapes

174

Model for CML Model for a 2-way Voice connection

Il Rcom Application

Eile Edit Diagram Window Help

Az 13 L =T

Bi- of -

g .
)

= - | wo% v

file: fC:/Program ¥ 20Files, Te

< PeterClarke
4 pclarke
< ProjectManager

< Voice

= B |5 outine 2@}

4 Voice

4 Lazaro Pi
< Ipi
4 Researchen

—— Palette —

3

Iy select

(== MNodes

d

<4 Person

<4 IsAttached

<4 Device

4 Connection

4 Capability

<4 TextStream

<4 VoiceStream

4 File

(= Links *

< Person-IsAttached
< IsAttached-Device
< Device-Connection
<4~ Capability-Device
< File-Connection

<4 TextStream-
Connection

<4 VoiceStream-
Connection

= Properties &7 I

| &5

T =0

4 Root
—

Core
Rulers & Grid
Appearance

Property

Value

Figure 35 UI, Model for CML model for a 2-way voice connection

175

Create new model

M Rcom Application
W Edit Window Help

N - ocon |

Open... Ctrl+0
Open URL... Ctrl+U
Initialize rrcomssys_diagram diagram file

Open File...

Convert Line Delimiters To 4

m
[N]

(]
y

Figure 36 UlI, create new model

176

Enter name for new model

B New Rcom Diagram

Create Rcom Diagram :
Select file that will contain diagram model. ef
File:
| k:\Documents and Settings'\Lazaro Fi'default?.rrcomssys_diagram | [Browse]
Back Mext =] [Einish l [Cancel

Figure 37 Ul, enter name for new model

Enter name for new model 2

B New Rcom Diagram

Create Rcom Diagram :
Select file that will contain domain model, f

File:

| C:'\Documents and Settings'Lazaro Pi'default?.rrcomssys | [Browse]

ext = Einish H Cancel

Figure 38 Ul, enter name for new model 2

178

New model created

File Edit Diagram Window Help

o x5 1 [Tahoms 5 B A B Fv oo Hie 02 . G- = - [00% v

s/ S%20and : %20Pidefault. rreomssys_diagram 7 = B[% outine 12| SEiRE]

~—— Palette —— 3
[y select |
(= Nodes ;\
4 Person

< IsAttached

4 Device

< Connection

< Capability

<4 TextStream

4 VoiceStream

4 File

(= Links »
4 Person-IsAttached
< IsAttached Device
< Device-Connection
4 Capabiity-Device

4 File-Connection

<& TextStream-
Connection

4 VoiceStream-
Connection

E= Properties £2 BEY =

4 Root

M—
Core Praperty Value

Rulers & Grid
Appearance

Figure 39 UI, new model created

179

10.4. Appendix D — Detailed Class Diagrams

CmeController

Parser and factory uses the policies 5

Polidies R ;
[y factories
Madel
/7}7 b .

i =

—

parsers

The parser is used to parse the files while transformation Iﬁ

Figure 40 Detailed Class Diagram, CmeController

180

This is used to
Generate the shapes

We are implementing the command design pattern this allows
for @ more controlable use of the environment

.]

N i preferences

Commands

There are other internal packages that are generated
by the edipse modelling environment

]

Geml

Modeling lj

== Control==
ToolBox

+availableshapes

Figure 41 Detailed class diagram, GCML

< <bgundary ==
Shapelist

< <boundary ==
ConnectionShape
< <boundary ==
IsAttachedShape
< <boundary ==
Shape
< <boundary ==
PersonShape
+personMame $
+personlD
+personfole
< <boundary >z
Deviceshape !
ey i < <boundary ==
+HaVirtual - | <<boundary == L
s CapabilityShape MediumShape
+type
/ 7}1 \ 1.
< <boundary=>
LiveAudioShape <<boundary>> <<boundary >
FileShape VideoShape

181

=z <control==
Canvas

+5hapes: Shapelist
+Lines: LineList
+HMarme

< <boundary ==
LineList

Contai

<<boundary ==
Line

< <boundary >z
FormShape

+formiame
+suggestedApplication
+voiceCommand
+action

+type

UCI

<<all Y>>
TransformParms

+getExtensions()
+GetFilePath()

<<auxiliarys>
CodeExtension

+Keys

<<interfaces =
AbstractFilter

-pathIn
-pathCut

+Executa()
+getPathIn()
+getPathOut()
+setPathin()
+setPathOut()

<<auxiliary>>
TransformFilter

+Execute()
-Transform()

-createXcmiToGemiFilter()
-createGemiToXcmlFilter()

GenerateGomlLayoutFilter

+executs()

< <Creates>

= —«ZInterfaces >
: Filter

+Executs()
+getPathIn()
+setPathIng)
+getPathOur()
+setPathOut()

SerializerFilter

+Execute()

-ExecuteScript()
+convertToSchamal)
-convertTolnstance()
-createXemlTaSchemarFilter)

| -createSchemaTolnstanceFilten()

<<Create»»

<<gontrol=:>
TransformPipeline

+getFilaMame()
+oreateGomiToXocmliPipeline()
+createXemiToGemiPipeline()

<<control=> N,
ValidationPipeline

<<guxiliary>=

CheckSemanticRulesFilter

+checkRules()

+createPipeline])

< <Create»>
Client N
<<houndary:>
Transform
Interfa
+from¥cmiToGoml{Xcml: Xoml) =< h....m._w...m..wwvv
+fromGemiToXerml{Geml: Geml) N
~Filtars: Filter
= +Execute()
<<boundary>> #GetFilters()
Validate
+Oparation1() —
+validateGeml() <<entity>>
Repository
+Models: ModelMetaData
; +lsers: User
Client AN +getinstance()
+getModels()

<< dlxillary=>

CheckModelSchemaFilter

+checkschemal)

Factory Pattern was used because it allows the factories (pipelines) AN
to easily create the appropiate filters that are needed.

Factories. Each factory creates AN
the appropiate filters as they are needed.

<<Creates>

<< ireates>

eeoe
182

Figure 42 Detailed Class Diagram, UCI

Repository

<<entity>>
ModelMetaData

-name: Siring
-description: String
4d: String

-format: String
-cmlPath: String

Contains

< <entity>>
Repository

+getattribute

i

Models: ModelMetaData

- zers: Lser

1

Contains

L.

&=

< <entity>>
User

-userMame: String
FulMame: String
Password

+getinstance()
+getModels()
+getiisers()

Figure 43 Detailed Class Diagram, Repository

183

+getiJserMName()
+zetlseriame)
+getFullMame)
+zetFulMame()
+getPassword()
+setPassword()

Xeml

<<entity>> <<entity>> < <entity > >
FE] | e _[:Jx_, Cml {] ____________________ XCml
= <entity>> < <entity>> < <entity>> < <entity>>
Data Connection | | UserSchema [-— | Person
<<entity > > <<entity>> <<entity > > <<entity > >
Form lgge-— | Medium FormType IsAttached
<<entity>> “<entity>>
Device MediumType

Figure 44 Detailed Class Diagram, XCML

184

10.5. Appendix E — Class Interfaces

Modeling Environment (gcml.diagram and geml.edit)

package geml.diagram.edit.commands;

/*k‘k

* @generated
*/
public class ConnectionCreateCommand extends CreateElementCommand {

}

package geml.diagram.edit.helpers;

/*k*

* @generated

*/

public class ConnectionEditHelper extends GemlBaseEditHelper {
¥

package gcml.diagram.edit.parts;

/**

* @generated

*/

public class ConnectionEditPart extends ShapeNodeEditPart {
¥

package geml.diagram.edit.policies;

/**

* @generated

*/

public class ConnectionltemSemanticEditPolicy extends
GcemlBaseltemSemanticEditPolicy {

}

package geml.diagram.navigator;

/‘k*

* @generated

*/

public abstract class GemlAbstractNavigatorltem extends PlatformObject {
}

package geml.diagram.parsers;

/**

* @generated
*/
public abstract class AbstractParser implements IParser {

}

package geml.diagram.part;

/‘k*
* @generated

185

*/
public class DeleteElementAction extends AbstractDeleteFromAction {

}

...Many more packages and classes that are part of gcml.diagram and gceml.edit...

Gcml Object Model

package geml;

import java.util. Arrays;
import java.util.Collections;
import java.util.List;

import org.eclipse.emf.common.util. Enumerator;

/‘k‘k
* <I-- begin-user-doc -->
* A representation of the literals of the enumeration 'Action',
* and utility methods for working with them.
* <!I-- end-user-doc -->
* @see gcml.GemlPackaget#tgetAction()
* @model
* @generated
*/
public enum Action implements Enumerator {
/*‘k
* The 'Send' literal object.
* <I-- begin-user-doc -->
* <!I-- end-user-doc -->
* @see #SEND_VALUE
* @generated
* @ordered
*/
SEND(0, "send", "send"),

/*'k

* The 'Do Not Send'literal object.
* <|-- begin-user-doc -->

* <I-- end-user-doc -->

* @see #DO_NOT_SEND_VALUE

* @generated

* @ordered

*/

DO_NOT_SEND(1, "doNotSend", "doNotSend"),

/**

* The 'Start' literal object.
* <I-- begin-user-doc -->

* <I-- end-user-doc -->

* @see #START_VALUE

* @generated

* @ordered

*/

START(2, "start", "start");

/**
* The 'Send' literal value.

186

* <!-- begin-user-doc -->

* <p>

* If the meaning of 'Send'literal object isn't clear,
* there really should be more of a description here...
* </p>

* <!-- end-user-doc -->

* @see #SEND

* @model name="send"

* @generated

* @ordered

*/

public static final int SEND_VALUE = 0;

/‘k*

* The 'Do Not Send' literal value.
* <I-- begin-user-doc -->

* <p>

* If the meaning of 'Do Not Send' literal object isn't clear,
* there really should be more of a description here...
* </p>

* <!I-- end-user-doc -->

* @see #DO_NOT_SEND

* @model name="doNotSend"

* @generated

* @ordered

*/

public static final int DO_NOT_SEND_VALUE = 1;

/’k*

* The 'Start' literal value.

* <!I-- begin-user-doc -->

* <p>

* If the meaning of 'Start' literal object isn't clear,
* there really should be more of a description here...
* </p>

* <!-- end-user-doc -->

* @see #START

* @model name="start"

* @generated

* @ordered

*/

public static final int START_VALUE = 2;

/**
* An array of all the 'Action' enumerators.
* <I-- begin-user-doc -->
* <I-- end-user-doc -->
* @generated
*/
private static final Action[] VALUES_ARRAY =
new Action[] {
SEND,
DO_NOT_SEND,
START,
|5

/**

* A public read-only list of all the 'Action' enumerators.
* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @generated

*/

public static final List<Action> VALUES
Collections.unmodifiableList(Arrays.asList(VALUES_ARRAY));

/“k*

* Returns the 'Action' literal with the specified literal value.
* <I-- begin-user-doc -->

* <|-- end-user-doc -->

* @generated

*/

public static Action get(String literal) {

¥

/‘k‘k

* Returns the 'Action' literal with the specified name.
* <I-- begin-user-doc -->

* <|-- end-user-doc -->

* @generated

*/

public static Action getByName(String name) {

}

/*‘k

* Returns the 'Action' literal with the specified integer value.
* <|-- begin-user-doc -->

* <I-- end-user-doc -->

* @generated

*/

public static Action get(int value) {

}

/**

* <I-- begin-user-doc -->
* <I-- end-user-doc -->

* @generated

*/

private final int value;

/**

* <I-- begin-user-doc -->

* <I-- end-user-doc -->

* @generated

*/

private final String name;

/**

* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @generated

*/

private final String literal;
/**

* Only this class can construct instances.
* <I-- begin-user-doc -->

* <!I-- end-user-doc -->

* @generated

188

*/
private Action(int value, String name, String literal) {

}

/‘k*

* <I-- begin-user-doc -->
* <!I-- end-user-doc -->
* @generated

*/

public int getValue() {

¥

/‘k*

* <!-- begin-user-doc -->
* <I-- end-user-doc -->

* @generated

*/

public String getName() {
¥

/“k*

* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @generated

*/

public String getLiteral() {
}

/’k*

* Returns the literal value of the enumerator, which is its string representation.
* <I-- begin-user-doc -->

* <!|-- end-user-doc -->

* @generated

*/

@Override

public String toString() {
}

} //Action

/*k*

* <copyright>
* </copyright>
*

* $1d$
*/
package geml;

import java.util. Arrays;
import java.util.Collections;
import java.util.List;

import org.eclipse.emf.common.util. Enumerator;

/**
* <I-- begin-user-doc -->
* A representation of the literals of the enumeration 'Capability',

* and utility methods for working with them.
* <!-- end-user-doc -->

189

* @see gcml.GemlPackage#getCapability()
* @model
* @generated
*/
public enum Capability implements Enumerator {
/**
* The 'Text File'literal object.
* <I-- begin-user-doc -->
* <I-- end-user-doc -->
* @see #TEXT_FILE_VALUE
* @generated
* @ordered
*/
TEXT_FILE(Q, "TextFile", "TextFile"),

/‘k*

* The 'Binary File' literal object.
* <I-- begin-user-doc -->

* <I-- end-user-doc -->

* @see #BINARY_FILE_VALUE

* @generated

* @ordered

*/

BINARY_FILE(, "BinaryFile", "BinaryFile"),

/*‘k

* The 'Stream File' literal object.
* <I-- begin-user-doc -->

* <I-- end-user-doc -->

* @see #STREAM_FILE_VALUE

* @generated

* @ordered

*/

STREAM_FILE(2, "StreamFile", "StreamFile"),

/*'k

* The 'Non Stream File' literal object.

* <!-- begin-user-doc -->

* <!-- end-user-doc -->

* @see #NON_STREAM_FILE_VALUE

* @generated

* @ordered

*/

NON_STREAM_FILE(3, "NonStreamFile", "NonStreamFile"),

/*'k

* The 'Audio File'literal object.
* <I-- begin-user-doc -->

* <I-- end-user-doc -->

* @see #AUDIO_FILE_VALUE

* @generated

* @ordered

*/
AUDIO_FILE(4, "AudioFile", "AudioFile"),

/**

* The 'Video File' literal object.
* <I-- begin-user-doc -->

* <!-- end-user-doc -->

190

* @see #VIDEO_FILE_VALUE

* @generated

* @ordered

*/

VIDEO_FILE(5, "VideoFile", "VideoFile"),

/**

* The 'AV File' literal object.
* <I-- begin-user-doc -->

* <I-- end-user-doc -->

* @see #AV_FILE_VALUE

* @generated

* @ordered

*/

AV_FILE(6, "AVFile", "AVFile"),

/‘k*

* The 'Text' literal object.
* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @see #TEXT_VALUE

* @generated

* @ordered

*/

TEXT(7, "Text", "Text"),

/*‘k

* The 'Live Stream'literal object.
* <I-- begin-user-doc -->

* <I-- end-user-doc -->

* @see #LIVE_STREAM_VALUE

* @generated

* @ordered

*/

LIVE_STREAM(S, "LiveStream", "LiveStream"),

/**k

* The 'Live Audio' literal object.
* <|-- begin-user-doc -->

* <I-- end-user-doc -->

* @see #LIVE_AUDIO_VALUE

* @generated

* @ordered

*/

LIVE_AUDIO(9, "LiveAudio", "LiveAudio"),

/**

* The 'Live Video' literal object.
* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @see #LIVE_VIDEO_VALUE

* @generated

* @ordered

*/

LIVE_VIDEO(10, "LiveVideo", "LiveVideo"),

/**

* The 'Live AV' literal object.
* <I-- begin-user-doc -->

191

* <I-- end-user-doc -->

* @see #LIVE_AV_VALUE

* @generated

* @ordered

*/

LIVE_AV(11, "LiveAV", "LiveAV");

/**

* The 'Text File' literal value.

* <I-- begin-user-doc -->

* <p>

* If the meaning of 'Text File' literal object isn't clear,
* there really should be more of a description here...
* </p>

* <!|-- end-user-doc -->

* @see #TEXT_FILE

* @model name="TextFile"

* @generated

* @ordered

*/

public static final int TEXT_FILE_VALUE = 0;

/*k'k

* The 'Binary File' literal value.
* <!-- begin-user-doc -->

* <p>

* If the meaning of 'Binary File' literal object isn't clear,
* there really should be more of a description here...
* </p>

* <!I-- end-user-doc -->

* @see #BINARY_FILE

* @model name="BinaryFile"

* @generated

* @ordered

*/

public static final int BINARY_FILE_VALUE = 1;

/*‘k

* The 'Stream File' literal value.
* <I-- begin-user-doc -->

* <p>

* If the meaning of 'Stream File' literal object isn't clear,
* there really should be more of a description here...
* </p>

* <I-- end-user-doc -->

* @see #STREAM_FILE

* @model name="StreamFile"

* @generated

* @ordered

*/
public static final int STREAM_FILE_VALUE = 2;

/‘k*

* The 'Non Stream File'literal value.

* <I-- begin-user-doc -->

* <p>

* If the meaning of 'Non Stream File'literal object isn't clear,

* there really should be more of a description here...
* </p>

192

* <I-- end-user-doc -->

* @see #NON_STREAM_FILE

* @model name="NonStreamFile"

* @generated

* @ordered

*/

public static final int NON_STREAM_FILE_VALUE = 3;

/**

* The 'Audio File'literal value.
* <I-- begin-user-doc -->

* <p>

* If the meaning of 'Audio File' literal object isn't clear,
* there really should be more of a description here...
* </p>

* <!-- end-user-doc -->

* @see #AUDIO_FILE

* @model name="AudioFile"

* @generated

* @ordered

*/

public static final int AUDIO_FILE_VALUE = 4;

/**

* The 'Video File' literal value.
* <I-- begin-user-doc -->

* <p>

* If the meaning of 'Video File'literal object isn't clear,
* there really should be more of a description here...
* </p>

* <!|-- end-user-doc -->

* @see #VIDEO_FILE

* @model name="VideoFile"

* @generated

* @ordered

*/

public static final int VIDEO_FILE_VALUE = 5;

/*‘k

* The 'AV File' literal value.

* <I-- begin-user-doc -->

* <p>

* If the meaning of 'AV File' literal object isn't clear,
* there really should be more of a description here...
* </p>

* <!-- end-user-doc -->

* @see #AV_FILE

* @model name="AVFile"

* @generated

* @ordered

*/

public static final int AV_FILE_VALUE = 6;

/‘k*

* The 'Text' literal value.

* <I-- begin-user-doc -->

* <p>

* If the meaning of 'Text' literal object isn't clear,
* there really should be more of a description here...

193

* </p>

* <I-- end-user-doc -->

* @see #TEXT

* @model name="Text"

* @generated

* @ordered

*/

public static final int TEXT_VALUE = 7;

/**

* The 'Live Stream' literal value.
* <I-- begin-user-doc -->

* <p>

* If the meaning of 'Live Stream' literal object isn't clear,
* there really should be more of a description here...
* </p>

* <!|-- end-user-doc -->

* @see #LIVE_STREAM

* @model name="LiveStream"

* @generated

* @ordered

*/

public static final int LIVE_STREAM_VALUE = 8;

/‘k‘k

* The 'Live Audio' literal value.
* <I-- begin-user-doc -->

* <p>

* If the meaning of 'Live Audio' literal object isn't clear,
* there really should be more of a description here...
* </p>

* <|-- end-user-doc -->

* @see #LIVE_AUDIO

* @model name="LiveAudio"

* @generated

* @ordered

*/

public static final int LIVE_AUDIO_VALUE = 9;

/‘k*

* The 'Live Video' literal value.
* <I-- begin-user-doc -->

* <p>

* If the meaning of 'Live Video' literal object isn't clear,
* there really should be more of a description here...
* </p>

* <I-- end-user-doc -->

* @see #LIVE_VIDEO

* @model name="LiveVideo"

* @generated

* @ordered

*/

public static final int LIVE_VIDEO_VALUE = 10;

/‘k*

* The 'Live AV' literal value.

* <I-- begin-user-doc -->

* <p>

* If the meaning of 'Live AV'literal object isn't clear,

194

* there really should be more of a description here...
* </p>

* <!-- end-user-doc -->

* @see #LIVE_AV

* @model name="LiveAV"

* @generated

* @ordered

*/

public static final int LIVE_AV_VALUE = 11;

/**k
* An array of all the 'Capability' enumerators.
* <I-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
private static final Capability[] VALUES_ARRAY =
new Capability[] {
TEXT_FILE,
BINARY_FILE,
STREAM_FILE,
NON_STREAM_FILE,
AUDIO_FILE,
VIDEO_FILE,
AV_FILE,
TEXT,
LIVE_STREAM,
LIVE_AUDIO,
LIVE_VIDEO,
LIVE_AV,

/**

* A public read-only list of all the 'Capability' enumerators.

* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @generated

*/

public static final List<Capability> VALUES
Collections.unmodifiableList(Arrays.asList(VALUES_ARRAY));

/‘k*

* Returns the 'Capability' literal with the specified literal value.
* <I-- begin-user-doc -->

* <|-- end-user-doc -->

* @generated

*/

public static Capability get(String literal) {

}

/‘k*

* Returns the 'Capability' literal with the specified name.
* <!-- begin-user-doc -->

* <I-- end-user-doc -->

* @generated

*/

public static Capability getByName(String name) {

}

195

/‘k*

* Returns the 'Capability' literal with the specified integer value.
* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @generated

*/

public static Capability get(int value) {

¥

/**

* <I-- begin-user-doc -->
* <I-- end-user-doc -->
* @generated

*/

private final int value;

/‘k*

* <I-- begin-user-doc -->
* <!I-- end-user-doc -->

* @generated

*/

private final String name;

/**k

* <|-- begin-user-doc -->

* <I-- end-user-doc -->

* @generated

*/

private final String literal;

/**

* Only this class can construct instances.

* <I-- begin-user-doc -->

* <|-- end-user-doc -->

* @generated

*/

private Capability(int value, String name, String literal) {

}

/**

* <I-- begin-user-doc -->
* <I-- end-user-doc -->

* @generated

*/

public int getValue({

}

/**

* <I-- begin-user-doc -->
* <I-- end-user-doc -->

* @generated

*/

public String getName() {
}

/**

* <I-- begin-user-doc -->
* <!I-- end-user-doc -->
* @generated

196

*/
public String getLiteral() {
}

/‘k*

* Returns the literal value of the enumerator, which is its string representation.
* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @generated

*/

@Override

public String toString() {
}

} //Capability

/**

* <copyright>
* </copyright>
*

* $1d$
*/
package geml;

/‘k*
* <!-- begin-user-doc -->
* A representation of the model object 'Child Form".
* <I-- end-user-doc -->
*
* <p>
* The following features are supported:
*
* {@link geml.ChildForm#getToParentForm To Parent Form}
* <ful>
* </p>
*
* @see geml.GemlPackage#tgetChildForm()
* @model
* @generated
*/
public interface ChildForm extends Form {
/**
* Returns the value of the 'To Parent Form' reference.
* <I-- begin-user-doc -->
* <p>
* If the meaning of the 'To Parent Form' reference isn't clear,
* there really should be more of a description here...
* </p>
* <!|-- end-user-doc -->
* @return the value of the 'To Parent Form' reference.
* @see #setToParentForm(Form)
* @see gcml.GemlPackage#getChildForm_ToParentForm()
* @model required="true"
* @generated
*/
Form getToParentForm();

/**

* Sets the value of the 'l@link geml.ChildForm#getToParentForm To Parent Form}'
reference.

* <I-- begin-user-doc -->

* <I-- end-user-doc -->

* @param value the new value of the 'To Parent Form' reference.

* @see #getToParentForm()

* @generated

*/

void setToParentForm(Form value);

} // ChildForm

/*‘k

* <copyright>
* </copyright>
*

* $1d$
*/
package geml;

/**
* <I-- begin-user-doc -->
* A representation of the model object 'Child Medium".
* <!-- end-user-doc -->
*
* <p>
* The following features are supported:
*
* {@link geml.ChildMedium#getToParentForm To Parent Form}
* <ful>
* </p>
*
* @see geml.GemlPackage#getChildMedium()
* @model
* @generated
*/
public interface ChildMedium extends Medium {
/*‘k
* Returns the value of the 'To Parent Form' reference.
* <I-- begin-user-doc -->
* <p>
* If the meaning of the 'To Parent Form' reference isn't clear,
* there really should be more of a description here...
* </p>
* <!-- end-user-doc -->
* @return the value of the 'To Parent Form' reference.
* @see #setToParentForm(Form)
* @see geml.GemlPackage#getChildMedium_ToParentForm()
* @model required="true"
* @generated
*/
Form getToParentForm();

/**

* Sets the value of the {@link geml.ChildMedium#getToParentForm To Parent Form}'
reference.

* <I-- begin-user-doc -->

* <!-- end-user-doc -->

198

* @param value the new value of the 'To Parent Form' reference.
* @see #getToParentForm()

* @generated

*/

void setToParentForm(Form value);
} /I ChildMedium
/**

* <copyright>
* </copyright>
*

* $1d$
*/
package geml;

import org.eclipse.emf.ecore. EObject;

/*k*
* <I-- begin-user-doc -->
* A representation of the model object 'Connection".
* <!-- end-user-doc -->
*
* <p>
* The following features are supported:
*
* {@link geml.Connection#getBandwidth Bandwidth}
* {@link geml.Connection#getConnectionID Connection ID}
* <ful>
* </p>
*
* @see gcml.GemlPackage#getConnection()
* @model
* @generated
*/
public interface Connection extends EObject {
/*‘k
* Returns the value of the 'Bandwidth' attribute.
* <I-- begin-user-doc -->
* <p>
* If the meaning of the 'Bandwidth' attribute isn't clear,
* there really should be more of a description here...
* </p>
* <!I-- end-user-doc -->
* @return the value of the 'Bandwidth' attribute.
* @see #setBandwidth(String)
* @see geml.GemlPackage#getConnection_Bandwidth()
* @model dataType="org.eclipse.emf.ecore.xml.type.String"
* @generated
*/
String getBandwidth();

/**

* Sets the value of the {@link gecml.Connection#getBandwidth Bandwidth}" attribute.
* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @param value the new value of the 'Bandwidth' attribute.

* @see #getBandwidth(

199

* @generated
*/
void setBandwidth(String value);

/‘k*

* Returns the value of the 'Connection ID" attribute.
* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Connection ID' attribute isn't clear,
* there really should be more of a description here...

* </p>

* <!-- end-user-doc -->

* @return the value of the 'Connection ID' attribute.

* @see #setConnectionID(String)

* @see gecml.GemlPackage#getConnection_ConnectionID()

* @model dataType="org.eclipse.emf.ecore.xml.type.String" required="true"
* @generated

*/

String getConnectionID();

/**

* Sets the value of the {@link geml.Connection#getConnectionID Connection ID}' attribute.

* <I-- begin-user-doc -->

* <I-- end-user-doc -->

* @param value the new value of the 'Connection ID" attribute.
* @see #getConnectionID()

* @generated

*/

void setConnectionID(String value);

} /I Connection

/**k

* <copyright>
* </copyright>
*

* $1d$

*/

package geml;

import org.eclipse.emf.common.util. EList;

import org.eclipse.emf.ecore. EObject;

/**k

* <I-- begin-user-doc -->

* A representation of the model object 'Device".

* <I-- end-user-doc -->

*

* <p>

* The following features are supported:

*

* <Ji>{@link geml.DevicettgetDeviceCapability Device Capability}

{@link geml.Device#getDeviceID Device ID}

{@link geml.Device#isIsLocal Is Local}</1i>

{@link geml.Device#isIsVirtual Is Virtual}

{@link geml.Device#getToConnection To Connection}

* % % % %

200

* </p>
*
* @see gecml.GemlPackage#tgetDevice()
* @model
* @generated
*/
public interface Device extends EObject {
/**
* Returns the value of the 'Device Capability' attribute list.
* The list contents are of type {@link geml.Capability}.
* The literals are from the enumeration {@link geml.Capability}.
* <!-- begin-user-doc -->
* <p>
* If the meaning of the 'Device Capability' attribute list isn't clear,
* there really should be more of a description here...
* </p>
* <!-- end-user-doc -->
* @return the value of the 'Device Capability' attribute list.
* @see geml.Capability
* @see gcml.GemlPackage#tgetDevice_DeviceCapability()
* @model unique="false"
* @generated
*/
EList<Capability> getDeviceCapability();

/‘k‘k

* Returns the value of the 'Device ID' attribute.
* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Device ID' attribute isn't clear,
* there really should be more of a description here...

* </p>

* <!-- end-user-doc -->

* @return the value of the 'Device ID' attribute.

* @see #setDeviceID(String)

* @see geml.GemlPackage#getDevice_DeviceID()

* @model dataType="org.eclipse.emf.ecore.xml.type.String" required="true"
* @generated

*/

String getDeviceID();

/‘k*

* Sets the value of the {@link gcml.DevicettgetDeviceID Device ID}" attribute.
* <I-- begin-user-doc -->

* <|-- end-user-doc -->

* @param value the new value of the 'Device ID" attribute.

* @see #getDeviceID()

* @generated

*/

void setDeviceID(String value);

/'k*

* Returns the value of the 'Is Local" attribute.
* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Is Local' attribute isn't clear,
* there really should be more of a description here...

* </p>

* <I-- end-user-doc -->

201

* @return the value of the 'Is Local' attribute.

* @see #isSetIsLocal()

* @see #unsetIsLocal()

* @see #setIsLocal(boolean)

* @see gecml.GemlPackage#getDevice_IsLocal()

* @model unsettable="true" dataType="org.eclipse.emf.ecore.xml.type.Boolean"
* @generated

*/

boolean isIsLocal();

/**

* Sets the value of the {@link geml.Device#isIsLocal Is Local}" attribute.
* <!-- begin-user-doc -->

* <I-- end-user-doc -->

* @param value the new value of the 'Is Local' attribute.
* @see #isSetIsLocal()

* @see #unsetIsLocal()

* @see #isIsLocal()

* @generated

*/

void setIsLocal(boolean value);

/'k'k

* Unsets the value of the {@link gcml.Device#isIsLocal Is Local}" attribute.
* <!-- begin-user-doc -->

* <!-- end-user-doc -->

* @see #isSetIsLocal()

* @see #isIsLocal()

* @see #setIsLocal(boolean)

* @generated

*/

void unsetIsLocal();

/**
* Returns whether the value of the {@link gcml.Device#isIsLocal Is Local}" attribute is set.
* <I-- begin-user-doc -->
* <I-- end-user-doc -->
* @return whether the value of the 'Is Local' attribute is set.
* @see #unsetIsLocal()
* @see #isIsLocal()
* @see #setIsLocal(boolean)
* @generated
*/
boolean isSetIsLocal(;

/**

* Returns the value of the 'Is Virtual' attribute.
* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Is Virtual' attribute isn't clear,
* there really should be more of a description here...

* </p>

* <!-- end-user-doc -->

* @return the value of the 'Is Virtual' attribute.

* @see #isSetIsVirtual(

* @see #unsetIsVirtual()

* @see #setIsVirtual(boolean)

* @see gcml.GemlPackage#tgetDevice_IsVirtual()

* @model unsettable="true" dataType="org.eclipse.emf.ecore.xml.type.Boolean

"

202

set.

* @generated
*/
boolean isIsVirtual(;

/**

* Sets the value of the {@link gcml. Device#isIsVirtual Is Virtual}" attribute.
* <I-- begin-user-doc -->

* <I-- end-user-doc -->

* @param value the new value of the 'Is Virtual' attribute.
* @see #isSetIsVirtual()

* @see #unsetIsVirtual()

* @see #HisIsVirtual()

* @generated

*/

void setIsVirtual(boolean value);

/‘k*

* Unsets the value of the '{@link geml.Device#isIsVirtual Is Virtual}' attribute.
* <I-- begin-user-doc -->

* <!|-- end-user-doc -->

* @see #isSetIsVirtual()

* @see #isIsVirtual()

* @see #setIsVirtual(boolean)

* @generated

*/

void unsetIsVirtual();

/**

* Returns whether the value of the '{@link geml.Device#isIsVirtual Is Virtual}" attribute is

* <I-- begin-user-doc -->

* <!|-- end-user-doc -->

* @return whether the value of the 'Is Virtual' attribute is set.
* @see #unsetIsVirtual()

* @see #isIsVirtual()

* @see #setIsVirtual(boolean)

* @generated

*/

boolean isSetIsVirtual(Q;

/**

* Returns the value of the 'To Connection' reference.
* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'To Connection' reference isn't clear,
* there really should be more of a description here...

* </p>

* <I-- end-user-doc -->

* @return the value of the 'To Connection' reference.

* @see #setToConnection(Connection)

* @see gecml.GemlPackage#getDevice_ToConnection()

* @model required="true"

* @generated

*/

Connection getToConnection();

/**

* Sets the value of the {@link gcml.Device#getToConnection To Connection}" reference.

* <I-- begin-user-doc -->

203

* <!|-- end-user-doc -->
* @param value the new value of the 'To Connection' reference.
* @see #getToConnection()

* @generated

*/

void setToConnection(Connection value);
} 1/ Device
/**

* <copyright>
* </copyright>
*

* $1d$
*/
package geml;

import org.eclipse.emf.common.util. EList;

import org.eclipse.emf.ecore.EObject;

/**
* <I-- begin-user-doc -->
* A representation of the model object 'Form'.
* <!-- end-user-doc -->
*
* <p>
* The following features are supported:
*
* {@link geml. Form#getMediumDataType Medium Data Type}
* {@link gcml. Form#getAction Action}
* {@link gcml. Form#getFormName Form Name}</1i>
* {@link gcml. Form#getSuggestedApplication Suggested Application}
* {@link geml. Form#getVoiceCommand Voice Command}
*
* </p>
*
* @see geml.GemlPackage#tget Form()
* @model
* @generated
*/
public interface Form extends EObject {
/**
* Returns the value of the 'Medium Data Type' attribute list.
* The list contents are of type {@link java.lang.String}.
* <I-- begin-user-doc -->
* <p>
* If the meaning of the 'Medium Data Type' attribute list isn't clear,
* there really should be more of a description here...
* </p>
* <!|-- end-user-doc -->
* @return the value of the 'Medium Data Type' attribute list.
* @see gcml.GemlPackagettgetForm_MediumDataType()
* @model unique="false" dataType="org.eclipse.emf.ecore.xml.type.String"
* @generated
*/
EList<String> getMediumDataType(;

/**

204

* Returns the value of the 'Action' attribute.
* The literals are from the enumeration {@link geml.Action}.

* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Action' attribute isn't clear,
* there really should be more of a description here...

* </p>

* <I-- end-user-doc -->

* @return the value of the 'Action' attribute.

* @see geml.Action

* @see #isSetAction()

* @see #unsetAction()

* @see #setAction(Action)

* @see geml.GemlPackage#getForm_Action()

* @model unsettable="true"

* @generated

*/

Action getAction();

/**

* Sets the value of the {@link gcml. Form#getAction Action}' attribute.
* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @param value the new value of the 'Action' attribute.
* @see geml.Action

* @see #isSetAction()

* @see #unsetAction()

* @see #getAction()

* @generated

*/

void setAction(Action value);

/**

* Unsets the value of the {@link gcml.Form#getAction Action}" attribute.
* <I-- begin-user-doc -->

* <I-- end-user-doc -->

* @see #isSetAction()

* @see #getAction()

* @see #setAction(Action)

* @generated

*/

void unsetAction();

/**

* Returns whether the value of the '{@link gecml. Form#getAction Action}' attribute is set.
* <I-- begin-user-doc -->

* <I-- end-user-doc -->

* @return whether the value of the 'Action" attribute is set.
* @see #unsetAction()

* @see #getAction()

* @see #setAction(Action)

* @generated

*/

boolean isSetAction();

/**

* Returns the value of the 'Form Name' attribute.
* <I-- begin-user-doc -->
* <p>

205

* If the meaning of the 'Form Name' attribute isn't clear,
* there really should be more of a description here...

* </p>

* <I-- end-user-doc -->

* @return the value of the 'Form Name' attribute.

* @see #setFormName(String)

* @see gcml.GemlPackage#tgetForm_FormName()

* @model dataType="org.eclipse.emf.ecore.xml.type.String" required="true"
* @generated

*/

String getFormName(;

/"k‘k

* Sets the value of the {@link gecml. Form#getFormName Form Name}" attribute.
* <I-- begin-user-doc -->

* <!I-- end-user-doc -->

* @param value the new value of the 'Form Name' attribute.

* @see #getFormName()

* @generated

*/

void setFormName(String value);

/*k'k

* Returns the value of the 'Suggested Application' attribute.
* <!-- begin-user-doc -->

* <p>

* If the meaning of the 'Suggested Application' attribute isn't clear,
* there really should be more of a description here...

* </p>

* <!-- end-user-doc -->

* @return the value of the 'Suggested Application" attribute.

* @see #setSuggestedApplication(String)

* @see gcml.GemlPackagettgetForm_SuggestedApplication()

* @model dataType="org.eclipse.emf.ecore.xml.type.String"

* @generated

*/

String getSuggestedApplication(;

/**
* Sets the value of the {@link geml. Form#getSuggestedApplication Suggested Application}'
attribute.
* <I-- begin-user-doc -->
* <I-- end-user-doc -->
* @param value the new value of the 'Suggested Application' attribute.
* @see #getSuggestedApplication()
* @generated
*/
void setSuggestedApplication(String value);

/**

* Returns the value of the 'Voice Command' attribute.
* <!-- begin-user-doc -->

* <p>

* If the meaning of the 'Voice Command' attribute isn't clear,
* there really should be more of a description here...

* </p>

* <I-- end-user-doc -->

* @return the value of the 'Voice Command' attribute.

* @see #setVoiceCommand(String)

206

* @see gcml.GemlPackage#tgetForm_VoiceCommand()

* @model dataType="org.eclipse.emf.ecore.xml.type.String"
* @generated

*/

String getVoiceCommand();

/**

* Sets the value of the {@link gcml. Form#getVoiceCommand Voice Command}" attribute.
* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @param value the new value of the 'Voice Command' attribute.

* @see #getVoiceCommand()

* @generated

*/

void setVoiceCommand(String value);

} // Form

/**

* <copyright>
* </copyright>
*

* $1d$
*/
package geml;

import org.eclipse.emf.common.util. EList;

import org.eclipse.emf.ecore. EObject;

/**

* <I-- begin-user-doc -->

* A representation of the model object 'Gceml".

* <!|-- end-user-doc -->

*

* <p>

* The following features are supported:

*

* {@link geml.Geml#getConnection Connection}
{@link gcml.Geml#getMedium Medium}
{@link gcml.Geml#getForm Form}

{@link geml.Geml#getPerson Person}</1i>
{@link gcml.Geml#getIsAttached Is Attached}
{@link geml.Geml#getDevice Device}
{@link gecml.Geml#getChildMedium Child Medium}
* {@link geml.Geml#getChildForm Child Form}
*

* </p>

*

* ok k% % %

* @see geml.GemlPackage#getGeml()
* @model
* @generated
*/
public interface Geml extends EObject {
/**
* Returns the value of the 'Connection' containment reference list.
* The list contents are of type {@link geml.Connection}.
* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Connection' containment reference list isn't clear,
* there really should be more of a description here...

* </p>

* <!-- end-user-doc -->

* @return the value of the 'Connection' containment reference list.
* @see gcml.GemlPackage#getGeml_Connection()

* @model containment="true"

* @generated

*/

EList<Connection> getConnection();

/"k*

* Returns the value of the 'Medium' containment reference list.
* The list contents are of type {@link gcml.MainMedium}.

* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Medium' containment reference list isn't clear,
* there really should be more of a description here...

* </p>

* <I-- end-user-doc -->

* @return the value of the 'Medium' containment reference list.

* @see geml.GemlPackage#getGeml_Medium()

* @model containment="true"

* @generated

*/

EList<MainMedium> getMedium();

/**

* Returns the value of the 'Form' containment reference list.
* The list contents are of type {@link geml.MainForm;.

* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Form' containment reference list isn't clear,
* there really should be more of a description here...

* </p>

* <!-- end-user-doc -->

* @return the value of the 'Form' containment reference list.

* @see geml.GemlPackage#tgetGeml_Form()

* @model containment="true"

* @generated

*/

EList<MainForm> getForm();

/**

* Returns the value of the 'Person' containment reference list.
* The list contents are of type {@link gcml.Person}.

* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Person' containment reference list isn't clear,
* there really should be more of a description here...

* </p>

* <!-- end-user-doc -->

* @return the value of the 'Person' containment reference list.

* @see gecml.GemlPackage#getGeml_Person()

* @model containment="true"

* @generated

*/

EList<Person> getPerson();

208

/'k*

* Returns the value of the 'Is Attached' containment reference list.
* The list contents are of type {@link gcml.IsAttached).

* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Is Attached' containment reference list isn't clear,
* there really should be more of a description here...

* </p>

* <I-- end-user-doc -->

* @return the value of the 'Is Attached' containment reference list.

* @see gcml.GemlPackage#getGeml IsAttached()

* @model containment="true"

* @generated

*/

EList<IsAttached> getIsAttached();

/**

* Returns the value of the 'Device' containment reference list.
* The list contents are of type {@link geml.Device}.

* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Device' containment reference list isn't clear,
* there really should be more of a description here...

* </p>

* <!-- end-user-doc -->

* @return the value of the 'Device' containment reference list.

* @see gecml.GemlPackage#tgetGeml_Device()

* @model containment="true"

* @generated

*/

EList<Device> getDevice();

/**

* Returns the value of the 'Child Medium' reference list.
* The list contents are of type {@link gecml.ChildMedium}.

* <!-- begin-user-doc -->

* <p>

* If the meaning of the 'Child Medium' reference list isn't clear,
* there really should be more of a description here...

* </p>

* <!|-- end-user-doc -->

* @return the value of the 'Child Medium' reference list.

* @see gcml.GemlPackage#tgetGeml_ChildMedium()

* @model

* @generated

*/

EList<ChildMedium> getChildMedium();

/*‘k

* Returns the value of the 'Child Form' reference list.
* The list contents are of type {@link geml.ChildForm}.

* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Child Form' reference list isn't clear,
* there really should be more of a description here...

* </p>

* <!-- end-user-doc -->

* @return the value of the 'Child Form' reference list.

209

* @see gcml.GemlPackage#getGeml_ChildForm()

* @model

* @generated

*/

EList<ChildForm> getChildForm();
} 11 Geml
/**

* <copyright>
* </copyright>
*

* $1d$
*/
package geml;

import org.eclipse.emf.ecore. EObject;

/**
* <I-- begin-user-doc -->
* A representation of the model object 'Is Attached'".
* <!-- end-user-doc -->
*
* <p>
* The following features are supported:
*
* {@link geml.IsAttached#getToDevice To Device}
* <ful>
* </p>
*
* @see gcml.GemlPackage#getIsAttached()
* @model
* @generated
*/
public interface IsAttached extends EObject {
/‘k*
* Returns the value of the 'To Device' containment reference.
* <!|-- begin-user-doc -->
* <p>
* If the meaning of the 'To Device' containment reference isn't clear,
* there really should be more of a description here...
* </p>
* <!-- end-user-doc -->
* @return the value of the 'To Device' containment reference.
* @see #setToDevice(Device)
* @see geml.GemlPackage#tgetIsAttached_ToDevice()
* @model containment="true" required="true"
* @generated
*/
Device getToDevice();

/**

* Sets the value of the "@link geml.IsAttached#getToDevice To Device}' containment
reference.

* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @param value the new value of the 'To Device' containment reference.

* @see #getToDevice()

210

* @generated
*/
void setToDevice(Device value);

} 1 TsAttached

/**

* <copyright>
* </copyright>
*

* $1d$
*/

package geml;

/‘k*
* <I-- begin-user-doc -->
* A representation of the model object 'Main Form".
* <I-- end-user-doc -->
*
* <p>
* The following features are supported:
*
* {@link geml.MainForm#getToConnection To Connection}
* <ful>
* </p>
*
* @see geml.GemlPackage#tgetMainForm()
* @model
* @generated
*/
public interface MainForm extends Form {
/**
* Returns the value of the 'To Connection' reference.
* <I-- begin-user-doc -->
* <p>
* If the meaning of the 'To Connection' reference isn't clear,
* there really should be more of a description here...
* </p>
* <I-- end-user-doc -->
* @return the value of the 'To Connection' reference.
* @see #setToConnection(Connection)
* @see gcml.GemlPackagettgetMainForm_ToConnection()
* @model
* @generated
*/
Connection getToConnection();

/*'k

* Sets the value of the {@link geml.MainForm#getToConnection To Connection}' reference.
* <|-- begin-user-doc -->

* <|-- end-user-doc -->

* @param value the new value of the 'To Connection' reference.

* @see #getToConnection()

* @generated

*/

void setToConnection(Connection value);

} // MainForm

211

/**

* <copyright>
* </copyright>
*

* $1d$

*/

package geml;

/**
* <!-- begin-user-doc -->
* A representation of the model object 'Main Medium".
* <I-- end-user-doc -->
*
* <p>
* The following features are supported:
*
* {@link gcml.MainMedium#getToConnection To Connection}
*
* </p>
*
* @see gcml.GemlPackage#tgetMainMedium()
* @model
* @generated
*/
public interface MainMedium extends Medium {
/‘k*
* Returns the value of the 'To Connection' reference.
* <I-- begin-user-doc -->
* <p>
* If the meaning of the 'To Connection' reference isn't clear,
* there really should be more of a description here...
* </p>
* <!-- end-user-doc -->
* @return the value of the 'To Connection' reference.
* @see #setToConnection(Connection)
* @see geml.GemlPackage#tgetMainMedium_ToConnection()
* @model required="true"
* @generated
*/
Connection getToConnection();

/**

* Sets the value of the '"@link gecml.MainMedium#getToConnection To Connection}'
reference.

* <I-- begin-user-doc -->

* <|-- end-user-doc -->

* @param value the new value of the 'To Connection' reference.

* @see #getToConnection()

* @generated

*/

void setToConnection(Connection value);

} // MainMedium

/**

* <copyright>
* </copyright>

212

*

* $1d$
*/

package geml;

import org.eclipse.emf.ecore.EObject;

/**

* <I-- begin-user-doc -->
* A representation of the model object 'Medium'.
* <!-- end-user-doc -->

*

* <p>

* The following features are supported:

*

* <]i>{@link gcml.Medium#getDerivedFromBuiltInType Derived From Built In Type}
* {@link geml.Medium#getMediumName Medium Name}

¥ {@link geml. Medium#getSuggestedApplication Suggested Application}

* {@link gcml.Medium#getVoiceCommand Voice Command}

* <ful>

* </p>
*

* @see gcml.GemlPackage#tgetMedium()
* @model
* @generated

*/

public interface Medium extends EObject {

/’k*

* Returns the value of the 'Derived From Built In Type' attribute.
* The literals are from the enumeration {@link geml.Capability}.

* <!-- begin-user-doc -->

* <p>

* If the meaning of the 'Derived From Built In Type' attribute isn't clear,
* there really should be more of a description here...

* </p>

* <!-- end-user-doc -->

* @return the value of the 'Derived From Built In Type" attribute.

* @see geml.Capability

* @see #isSetDerivedFromBuiltInType()

* @see #unsetDerived FromBuiltInType()

* @see #setDerived FromBuiltInType(Capability)

* @see gcml.GemlPackage#tgetMedium_Derived FromBuiltInType()

* @model unsettable="true"

* @generated

*/

Capability getDerivedFromBuiltInType();

/**

* Sets the value of the '{@link geml.Medium#getDerivedFromBuiltInType Derived From Built In

Type}" attribute.

* <!|-- begin-user-doc -->

* <!|-- end-user-doc -->

* @param value the new value of the 'Derived From Built In Type' attribute.
* @see geml.Capability

* @see #isSetDerivedFromBuiltInType()

* @see #unsetDerived FromBuiltInType()

* @see #getDerived FromBuiltInType()

* @generated

*/

213

void setDerivedFromBuiltInType(Capability value);

/**

* Unsets the value of the {@link geml.Medium#getDerivedFromBuiltInType Derived From Built
In Type}" attribute.

* <I-- begin-user-doc -->

* <!I-- end-user-doc -->

* @see #isSetDerivedFromBuiltInType()

* @see #getDerived FromBuiltInType()

* @see #setDerivedFromBuiltInType(Capability)

* @generated

*/

void unsetDerived FromBuiltInType(;

/**

* Returns whether the value of the {@link gecml.Medium#getDerivedFromBuiltInType Derived
From Built In Type}' attribute is set.

* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @return whether the value of the 'Derived From Built In Type' attribute is set.

* @see #unsetDerived FromBuiltInType(

* @see #getDerived FromBuiltInType()

* @see #setDerived FromBuiltInType(Capability)

* @generated

*/

boolean isSetDerived FromBuiltInType();

/**

* Returns the value of the 'Medium Name' attribute.
* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Medium Name' attribute isn't clear,
* there really should be more of a description here...

* </p>

* <|-- end-user-doc -->

* @return the value of the 'Medium Name' attribute.

* @see #setMediumName(String)

* @see geml.GemlPackage#getMedium_MediumName()

* @model dataType="org.eclipse.emf.ecore.xml.type.String" required="true"
* @generated

*/

String getMediumName();

/**

* Sets the value of the {@link gcml.Medium#getMediumName Medium Name}' attribute.
* <I-- begin-user-doc -->

* <|-- end-user-doc -->

* @param value the new value of the 'Medium Name' attribute.

* @see #getMediumName()

* @generated

*/

void setMediumName(String value);

/‘k*

* Returns the value of the 'Suggested Application' attribute.
* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Suggested Application' attribute isn't clear,
* there really should be more of a description here...

214

* </p>

* <!|-- end-user-doc -->

* @return the value of the 'Suggested Application' attribute.
* @see #setSuggestedApplication(String)

* @see gecml.GemlPackage#tgetMedium_SuggestedApplication()

* @model dataType="org.eclipse.emf.ecore.xml.type.String"

* @generated

*/

String getSuggestedApplication();

/**

* Sets the value of the "@link gemlMedium#getSuggestedApplication

Application}' attribute.
* <!-- begin-user-doc -->
* <I-- end-user-doc -->

* @param value the new value of the 'Suggested Application' attribute.

* @see #getSuggestedApplication()

* @generated

*/

void setSuggestedApplication(String value);

/*k'k

* Returns the value of the 'Voice Command' attribute.
* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Voice Command" attribute isn't clear,
* there really should be more of a description here...

* </p>

* <I-- end-user-doc -->

* @return the value of the 'Voice Command" attribute.

* @see #setVoiceCommand(String)

* @see gcml.GemlPackage#tgetMedium_VoiceCommand()

* @model dataType="org.eclipse.emf.ecore.xml.type.String"

* @generated

*/

String getVoiceCommand(;

/**

Suggested

* Sets the value of the "@link geml.Medium#getVoiceCommand Voice Command}'

attribute.
* <I-- begin-user-doc -->
* <I-- end-user-doc -->
* @param value the new value of the 'Voice Command' attribute.
* @see #getVoiceCommand()
* @generated
*/
void setVoiceCommand(String value);

} 1 Medium

/**

* <copyright>
* </copyright>
*

* $1d$
*/
package geml;

import org.eclipse.emf.ecore. EObject;

215

/'k*

* <I-- begin-user-doc -->

* A representation of the model object 'Person'.

* <I-- end-user-doc -->

*

* <p>

* The following features are supported:

*

* <]i>{@link gcml.Person#getPersonID Person ID}

* {@link gcml.Person#getPersonName Person Name}
* {@link geml. Person#getPersonRole Person Role}

* {@link geml. Person#getTolsAttached To Is Attached}
* <ful>

* </p>

*

* @see gecml.GemlPackage#tgetPerson()

* @model

* @generated

*/

public interface Person extends EObject {

/**
* Returns the value of the 'Person ID' attribute.
* <I-- begin-user-doc -->
* <p>
* If the meaning of the 'Person ID" attribute isn't clear,
* there really should be more of a description here...
* </p>
* <I-- end-user-doc -->
* @return the value of the 'Person ID' attribute.
* @see #setPersonID(String)
* @see gcml.GemlPackage#getPerson_PersonID()
* @model dataType="org.eclipse.emf.ecore.xml.type.String" required="true"
* @generated
*/
String getPersonID();

/**

* Sets the value of the {@link geml.Person#getPersonID Person ID}" attribute.
* <I-- begin-user-doc -->

* <!I-- end-user-doc -->

* @param value the new value of the 'Person ID' attribute.

* @see #getPersonID()

* @generated

*/

void setPersonID(String value);

/**

* Returns the value of the 'Person Name' attribute.
* <!-- begin-user-doc -->

* <p>

* If the meaning of the 'Person Name' attribute isn't clear,
* there really should be more of a description here...

* </p>

* <I-- end-user-doc -->

* @return the value of the 'Person Name' attribute.

* @see #setPersonName(String)

* @see gcml.GemlPackage#getPerson_PersonName()

* @model dataType="org.eclipse.emf.ecore.xml.type.String" required="true

n

216

* @generated
*/
String getPersonName();

/‘k*
* Sets the value of the {@link gcml.Person#getPersonName Person Name}" attribute.
* <I-- begin-user-doc -->
* <!-- end-user-doc -->
* @param value the new value of the 'Person Name' attribute.
* @see #getPersonName()
* @generated
*/
void setPersonName(String value);

/**

* Returns the value of the 'Person Role' attribute.
* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'Person Role" attribute isn't clear,
* there really should be more of a description here...

* </p>

* <I-- end-user-doc -->

* @return the value of the 'Person Role' attribute.

* @see #setPersonRole(String)

* @see gcml.GemlPackage#getPerson_PersonRole()

* @model dataType="org.eclipse.emf.ecore.xml.type.String" required="true"
* @generated

*/

String getPersonRole();

/**

* Sets the value of the {@link gcml.Person#getPersonRole Person Role}' attribute.
* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @param value the new value of the 'Person Role' attribute.

* @see #getPersonRole()

* @generated

*/

void setPersonRole(String value);

/‘k‘k

* Returns the value of the 'To Is Attached' reference.
* <I-- begin-user-doc -->

* <p>

* If the meaning of the 'To Is Attached' reference isn't clear,
* there really should be more of a description here...

* </p>

* <I-- end-user-doc -->

* @return the value of the 'To Is Attached' reference.

* @see #setTolsAttached(IsAttached)

* @see gcml.GemlPackage#getPerson_TolsAttached()

* @model required="true"

* @generated

*/

IsAttached getTolsAttached();

/**
* Sets the value of the {@link gcml.Person#getTolsAttached To Is Attached}' reference.
* <I-- begin-user-doc -->

* <!-- end-user-doc -->

* @param value the new value of the 'To Is Attached' reference.
* @see #getTolsAttached()

* @generated

*/

void setTolsAttached(IsAttached value);

} // Person

Xcml object Model

1

// This file was generated by the JavaTM Architecture for XML Binding(JAXB) Reference Implementation,
vhudson-jaxb-ri-2.1-646

/I See http://java.sun.com/xml/jaxb

/I Any modifications to this file will be lost upon recompilation of the source schema.

/I Generated on: 2008.10.21 at 10:28:09 AM EDT

1l

package xcml;

import javax.xml.bind.annotation.XmlEnum;

218

import javax.xml.bind.annotation.XmlEnumValue;
import javax.xml.bind.annotation.XmlType;

/**

* <p>Java class for actionType.

*

* <p>The following schema fragment specifies the expected content contained within this class.
* <p>

* <pre>

* <simpleType name="actionType">

* <restriction base="{thttp://www.w3.0rg/2001/XMLSchema}string">
<enumeration value="send"/>

<enumeration value="doNotSend"/>

<enumeration value="start"/>

* </restriction>

* <i/simpleType>

* </pre>

*

*/

@XmlType(name = "actionType")

@XmlEnum

public enum ActionType {

* % %

@XmlEnumValue("send")
SEND("send"),
@XmlEnumValue("doNotSend")
DO_NOT_SEND("doNotSend"),
@XmlEnumValue("start")
START("start");

private final String value;

ActionType(String v) {

public String value() {
}

public static ActionType fromValue(String v) {
}

}

1l

/I This file was generated by the JavaTM Architecture for XML Binding(JAXB) Reference Implementation,
vhudson-jaxb-ri-2.1-646

/I See http://java.sun.com/xml/jaxb

/I Any modifications to this file will be lost upon recompilation of the source schema.

/I Generated on: 2008.10.21 at 10:28:09 AM EDT

I

package xcml;
import javax.xml.bind.annotation.XmlEnum;

import javax.xml.bind.annotation.XmlEnumValue;
import javax.xml.bind.annotation.XmlType;

219

/*k‘k

* <p>Java class for capabilityType.

*

* <p>The following schema fragment specifies the expected content contained within this class.
* <p>

* <pre>

* <simpleType name="capabilityType">

* <restriction base="thttp://www.w3.org/2001/XMLSchema}string">
<enumeration value="TextFile"/>
<ienumeration value="BinaryFile"/>
<enumeration value="StreamFile"/>
<enumeration value="NonStreamFile"/>
<enumeration value="AudioFile"/>
<enumeration value="VideoFile"/>
<ienumeration value="AVFile"/>
<ienumeration value="Text"/>
<ienumeration value="LiveStream"/>
<enumeration value="LiveAudio"/>
<enumeration value="LiveVideo"/>
<enumeration value="LiveAV"/>

* <i/restriction>

* <i/simpleType>

* </pre>

*

*/

@XmlType(name = "capabilityType")
@XmlEnum

public enum CapabilityType {

I R R T B R R

@XmlEnumValue("TextFile")
TEXT_FILE("TextFile"),
@XmlEnumValue("BinaryFile")
BINARY_FILE("BinaryFile"),
@XmlEnumValue("StreamFile")
STREAM_FILE("StreamFile"),
@XmlEnumValue("NonStreamFile")
NON_STREAM_FILE("NonStreamFile"),
@XmlEnumValue("AudioFile")
AUDIO_FILE("AudioFile"),
@XmlEnumValue("VideoFile")
VIDEO_FILE("VideoFile"),
@XmlEnumValue("AVFile")
AV_FILE("AVFile"),
@XmlEnumValue("Text")
TEXT("Text"),
@XmlEnumValue("LiveStream")
LIVE_STREAM("LiveStream"),
@XmlEnumValue("LiveAudio")
LIVE_AUDIO("LiveAudio"),
@XmlEnumValue("LiveVideo")
LIVE_VIDEO("LiveVideo"),
@XmlEnumValue("LiveAV")
LIVE_AV("LiveAV");

private final String value;

CapabilityType(String v) {

public String value({

220

}

public static CapabilityType fromValue(String v) {
}

}

/1

/I This file was generated by the JavaTM Architecture for XML Binding(JAXB) Reference Implementation,
vhudson-jaxb-ri-2.1-646

/I See http://java.sun.com/xml/jaxb

/I Any modifications to this file will be lost upon recompilation of the source schema.

/I Generated on: 2008.10.21 at 10:28:09 AM EDT

/1

package xcml;

import java.util. Arraylist;

import java.util.List;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlType;

/’k*

* <p>Java class for connectionType complex type.
*

* <p>The following schema fragment specifies the expected content contained within this class.
*
* <pre>
* <complexType name="connectionType">
* <complexContent>
<restriction base="{http://www.w3.org/2001/XMLSchema}anyType">
<isequence>
<element name="device" type="{}deviceType" maxOccurs="unbounded"/>
<element name="mediumTypeNameRef" type="thttp://www.w3.0org/2001/XMLSchemajstring"
maxQOccurs="unbounded" minOccurs="0"/>
* <element name="formTypeNameRef" type="{thttp://www.w3.org/2001/XMLSchema}string"
maxQOccurs="unbounded" minOccurs="0"/>
* <i/sequence>
<attribute name="connectionID" use="required" type="{http://www.w3.org/2001/XMLSchema}string" />
<attribute name="bandwidth" type="thttp://www.w3.org/2001/XMLSchema}string" />
</restriction>
</complexContent>
* <i/complexType>
* </pre>
*

* % %

*

* % %

*

*
*/
@XmlAccessorType(XmlAccessType. FIELD)
@XmlType(name = "connectionType", propOrder = {
"device",
"mediumTypeNameRef",
"formTypeNameRef"
b

public class ConnectionType {

221

@XmlElement(required = true)

protected List<DeviceType> device;

protected List<String> mediumTypeNameRef;
protected List<String> formTypeNameRef;
@XmlAttribute(required = true)

protected String connectionID;
@XmlAttribute

protected String bandwidth;

/**

* Gets the value of the device property.

*

* <p>

* This accessor method returns a reference to the live list,

* not a snapshot. Therefore any modification you make to the
* returned list will be present inside the JAXB object.

* This is why there is not a <CODE>set</CODE> method for the device property.
*

* <p>

* For example, to add a new item, do as follows:

* <pre>

* getDevice().add(newltem);

* </pre>
*

*

* <p>

* Objects of the following type(s) are allowed in the list
* {@link DeviceType }

*

*

*/

public List<DeviceType> getDevice() {
¥

/**

* Gets the value of the mediumTypeNameRef property.
*

* <p>

* This accessor method returns a reference to the live list,

* not a snapshot. Therefore any modification you make to the

* returned list will be present inside the JAXB object.

* This is why there is not a <CODE>set</CODE> method for the mediumTypeNameRef property.

*

* <p>

* For example, to add a new item, do as follows:
* <pre>

* getMediumTypeNameRef().add(newItem);

* </pre>
*

*

* <p>

* Objects of the following type(s) are allowed in the list
* {@link String }

*

*

*/

public List<String> getMediumTypeNameRef() {
}

222

/**

* Gets the value of the formTypeNameRef property.

*

* <p>

* This accessor method returns a reference to the live list,

* not a snapshot. Therefore any modification you make to the

* returned list will be present inside the JAXB object.

* This is why there is not a <CODE>set</CODE> method for the formTypeNameRef property.

*

* <p>

* For example, to add a new item, do as follows:
* <pre>

* getFormTypeNameRef().add(newItem);

* </pre>
*

*

* <p>

* Objects of the following type(s) are allowed in the list
* {@link String }

*

*

*/

public List<String> getFormTypeNameRef() {
}

/**

* Gets the value of the connectionID property.
*

* @return

* possible object is

* {@link String }

*

*/

public String getConnectionID() {

}

/**

* Sets the value of the connectionID property.
*

* @param value

* allowed object is

* {@link String }

*

*/

public void setConnectionID(String value) {

}

/**

* Gets the value of the bandwidth property.
*

* @return

* possible object is

* {@link String }

*

*/

public String getBandwidth({

}

223

/‘k*

* Sets the value of the bandwidth property.

*

* @param value

* allowed object is

* {@link String }

*

%/

public void setBandwidth(String value) {
}

¥

...All other classes are similar and generated by JABX...
The Xeml class is the root of the Model and entry point
package xcml;

import java.util.List;

public class Xcml {
private final UserSchema userSchema;
private final Data data;
private final List<ValidationError> errors;

public Xeml(Object obj, List<ValidationError> errors) {
h

/**

* @return the userSchema

*/

public UserSchema getUserSchema() {
}

/‘k*

* @return the data

*/

public Data getData() {
h

/**

* @return the errors

*/

public List<ValidationError> getErrors({
}

/‘k‘k

* @return

*/

public boolean containsErrors() {

}
}

package xcml;

import java.io.File;
import java.io.StringReader;

224

import java.io.StringWriter;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;

import javax.xml.bind. Unmarshaller;
import javax.xml.validation.SchemaFactory;

import org.w3c.dom.Node;
import org.xml.sax.SAXException;

public class XemlFactory extends ObjectFactory {

}

private final JAXBContext jaxbContext;

private final Unmarshaller unmarshaller;

private final Marshaller marshaller;

private final XemlValidationEventHandler evtHandler;

/**

* @return

*/

private static File getSchemaFile({
}

/‘k*

* @throws JAXBException

* @throws SAXException

*/

public XemlFactory() throws JAXBException, SAXException {
}

/**

* @param xml

* @return

* @throws JAXBException

*/

public synchronized Xeml readXeml(File xml) throws JAXBException {
}

/**

* @param xml

* @return

* @throws JAXBException

*/

public synchronized Xeml readXeml(Node xml) throws JAXBException {
}

/‘k*

* @param rootElement

* @return

* @throws JAXBException

*/

public synchronized String writeXcml(Xeml rootElement) throws JAXBException {
}

package xcml;

import java.util. LinkedList;

225

import java.util.List;

import javax.xml.bind.ValidationEvent;
import javax.xml.bind.ValidationEventHandler;
import javax.xml.bind.ValidationEventLocator;

public class XecmlValidationEventHandler implements ValidationEventHandler {
private List<ValidationError> errors;

/**

*/

public XcmlIValidationEventHandler() {
}

/* (non-Javadoc)

* @see javax.xml.bind.ValidationEventHandler#handleEvent(javax.Xml.bind.ValidationEvent)
*/

public boolean handleEvent(ValidationEvent ve) {

}

public List<ValidationError> getErrors({
}
}

package xcml;

/** Similar to the XCML classes implemented by Team 1
*@

*

*/

public interface XCMLVisitor {

/*-k

* @param node

* @return

*/

public Object visit(ConnectionType node);

/**

* @param node

* @return

*/

public Object visit(Data node);

/‘k‘k

* @param node

* @return

*/

public Object visit(DeviceType node);

/*k*

* @param node

* @return

*/

public Object visit(FormType node);

226

/‘k‘k

* @param node

* @return

*/

public Object visit(FormTypeType node);

/**

* @param node

* @return

*/

public Object visit(IsAttachedType node);

/*k‘k

* @param node

* @return

*/

public Object visit(MediumType node);

/**

* @param node

* @return

*/

public Object visit(MediumTypeType node);

/*k*

* @param node

* @return

*/

public Object visit(PersonType node);

/**

* @param node

* @return

*/

public Object visit(Xeml node);

/**

* @param node

* @return

*/

public Object visit(UserSchema node);

Repository

* @author Leandro Wong

eoe
227

* the Repository contains the saved models
* %

*/
package cme.repository;
import java.util. Arraylist;

public class Repository 1
private ArrayList<ModelMetadata> models;
private ArrayList<User> users;
private static Repository instance;

private Repository(O{
/lrequires use of instance method
}

/**

* @return the singleton instance

*/

public static Repository getInstance() {

}

private static void initializeInstance({
/I do some initialization based on configuration
/I for example the general path to the repository
// the repository type Gf is a file server or
/I a database)

}

public ArrayList<ModelMetadata> getModels() {

}

public void setModels(ArrayList<ModelMetadata> models) {
}

public ArrayList<User> getUsers({

}

public void setUsers(ArrayList<User> users) {

}

package cme.repository;

public class User {
private String userName;
private String password;
private String fullName;
private UserType userType = UserType.Modeler;

public UserType getUserType() {

i)ublic void setUserType(UserType userType) {
i)ublic String getUserName() {

i)ublic void setUserName(String userName) {
%ublic String getPassword({

public void setPassword(String password) {

228

}

public String getFullName() {

}

public void setFullName(String fullName) {
}

public enum UserTypet
Modeler,
Administrator

}

package cme.repository;

public class ModelMetadata {
public String getName() {

}

public void setName(String name) {

}

public String getDescription({
}

public void setDescription(String description) {

}
public String getGemlPath() {
}

public void setGemlPath(String gecmlPath) {
H

public String getGemlLayoutPath() {
}

public void setGemlLayoutPath(String gemlLayoutPath) {
}

public String getXemlPath() {
}

public void setXcmlIPath(String xemlPath) {
}

public String getId({
}

public void setId(String id) {
}

public Format getFormat() {
}

public void setFormat(Format format) {

}

public enum Format {
Xeml, Geml, Both
}

229

}
UCI (Transformation and Validation)

/**

* @author Lazaro Pi
* the Filter interface

* provides the interfaces that all the filters will inherit from
*

*/
package cme.uci;

import java.util. Arraylist;
public abstract class Pipeline {

public String Execute() {

¥
private ArrayList<Filter> filters = new ArrayList<Filter>();

protected ArrayList<Filter> getFilters({
¥
¥

package cme.uci;

/**

* @author Lazaro Pi

* the Filter interface

*/

public interface Filter {
/‘k*

* Gets the path in.
*

* @return the path in.
*/

String getPathIn(;

/**

* Sets the path in.
*

* @param value

* the path in

*/

void setPathIn(String value);
/’k*

* Gets the path out.

*

* @return the path out.

*
/
String getPathOut();

/‘k‘k

230

* Sets the path out.
*

* @param value

* the path out

*/

void setPathOut(String value);

/**

* Executes this instance.
*/

void Execute();

}

package cme.uci;

public abstract class AbstractFilter implements Filter{

/*

* (non-Javadoc)

*

* @see cme.transform.Filter#getPathIn()
*/

public String getPathIn() {

}

/‘k
* (non-Javadoc)
*

* @see cme.transform.Filter#setPathIn(java.lang.String)
*/

public void setPathIn(String in) {

}

/*
* (non-Javadoc)
*

* @see cme.transform.Filter#figetPathOut(
*/

public String getPathOut() {

h

/*(non-Javadoc)

* @see cme.transform.Filter#tsetPathOut(java.lang.String)
*/

public void setPathOut(String out) {

}

/*‘k

* the path in for this filter.
*/

private String _pathln;

/**

* the path out for this filter.
*/
private String _pathOut;

231

package cme.uci.transform;

import bin.geml.Geml;
import bin.xcml. Xcml;

public class Transform {
public static void fromXemlToGeml(String xemlPath, String gecmlPath,
String gemlLayoutPath) {
/ldo transformation here
¥
public static void fromGemlToXeml(String gemlPath, String gemlLayoutPath,
String xemlPath) {
/ldo transformation here
}
public static Xeml toXeml(Geml gemlInstance)t
/lreturn in memory
}

public static Geml toGeml(Xem] xemlInstance){
/lreturn in memory
}

package cme.uci.transform;

import java.io.File;
import java.util. Arraylist;

import cme.uci.Filter;

import cme.uci.Pipeline;

import cme.uci.filters.SerializerFilter;
import cme.uci.filters. TransformFilter;

/*'k
* Represents the Transformations as a linear pipeline where all the steps are
* executed in order and the input of one step is the output of the previous
* step. The last output is returned to the client that called the execute
* method.
*
* @author Lazaro Pi
*/
public class TransformPipeline extends Pipeline {
/**
* Initializes a new instance of the Pipeline class. Private in order to
* force the use of the factory method.
*/
private TransformPipeline() {
/I requires factory method
}

public static TransformPipeline createGemlToXcmlPipeline(String pathIn) {
/I creates the pipeline

/I creates the working directory
/I adds all the filters to the pipeline

/I returns the pipeline

232

}

public static TransformPipeline createXemlToGemlPipeline(String pathIn) {
/Il creates the pipeline

/I creates the working directory
/I adds all the filters to the pipeline

/] returns the pipeline

}

package cme.uci.validate;

import bin.geml.Geml;
import bin.xcml. Xeml;

public class Validate {
public static boolean validateGeml(String gemlPath, String gemlLayoutPath) {
// validate
¥

public static boolean validateXcml(String xemlPath) {
// validate
¥

public static boolean validateXecml(Xeml xemlInstance) {
/I validate
}

public static boolean validateGeml(Geml gemlInstance) {
// validate
}

}

package cme.uci.validate;
import cme.uci.Pipeline;

public class ValidationPipeline extends Pipeline {
/*k*

* Initializes a new instance of the Pipeline class. Private in order to
* force the use of the factory method.
*/
private ValidationPipeline() {
/I requires factory method
}

public static ValidationPipeline createPipeline(String pathln) {
/I creates the pipeline

/I TODO: adds all the filters to the pipeline

/l returns the pipeline

233

package cme.uci.filters;

import java.util. HashMap;
import java.util.Map;

import cme.uci.AbstractFilter;

/‘k‘k
* @author Lazaro Pi Represents one step in the pipeline of transformations.
* Transforms the input into an output file by using the specified XSLT

* and code extensions.

*/
public class TransformFilter extends AbstractFilter {

/**

* the transform parameters for this filter
*/

private TransformParms parms;

/**

* @param parms

* the parameters

*/

public void setParms(TransformParms parms) {

}

/**

* @return the parameters

*/

public TransformParms getParms() {

}

/‘k
* (non-Javadoc)
*

* @see cme.transform.Filter#Execute()
*/

public void Execute() {

}

/**

* Transforms the input into an output file by using the specified

* parameters.
*

* @param pathln

* the path in
* @param pathOut
* the path out

* @param parms
* the parameters
*/

public static TransformFilter createGemlToXcemlFilter(String pathln,
String pathOut) {
¥

234

public static TransformFilter createXcmlToGemlFilter(String pathlIn,
String pathOut) {
}

package cme.uci.filters;
import cme.uci.AbstractFilter;
public class CheckSemanticRulesFilter extends AbstractFilter {

@Override
public void Execute({

/I TODO Auto-generated method stub
}

/**

* Creates the semantic rules filter

* @param pathln the path in.

* @param pathOut the path out.

* @return the created filter

*/

public static CheckSemanticRulesFilter createCheckModelSchemaFilter(String pathln,
String pathOut) {

}

...More Filter classes to accomplish transformation and validation...
...they all have an execute method...

235

Administration and Security

/* This package is in charge of the access Rights
*

*Team 2
*/

package cme.admin;
import java.util.List;

import cme.repository.Repository;
import cme.repository.User;

public class SecurityContext {
private static User currentUser;

public static boolean Login(String userName, String password){
/lchecks credentials and sets the current user
/lreturns true if valid login

}

public static void LogoutO{
}

package cme.admin;

public class Crypto {

/**

* Encrypts the decrypted string

* @param original

* @return the encrypted String

*/

public static String encrypt(String original){
¥

/*k*

* Decrypts the encrypted String

236

* @param encrypted

* @return the decrypted string

*/

public static String decrypt(String encrypted){
H

10.6. Appendix F — Documented Code for Test Drivers

/*This class contains the test driver for Transform Java. The driver works by defining the
args that the class is run with author Team 2. */

package cme.uci.transform;

import java.io.File;
import java.io.FileNotFoundException;

import javax.xml.transform.TransformerException;

import geml.Geml;
import xeml.*;

public class Transform 1
public static void fromXcmlToGeml(String xemlPath, String gecmlPath,
String gecmlLayoutPath) {
/l do transformation here
XcmlProvider provider = new XcmlProvider();
Xeml xeml = provider.getObjects(new File(xecmlIPath));

public static String fromGemlIToXeml(String gemlPath, String gemlLayoutPath,

237

String xcmlPath) throws FileNotFoundException, TransformerException {
XslTransform.transform(gemlPath, Transform.class.getResource(
"FromGemlToXeml.xslt").getPath(), xemlPath);

/I check that it can be read as XCML
XcemlProvider provider = new XcmlProvider();
Xeml xeml = provider.getObjects(new File(xecmlIPath));

if (xeml != null)
return xcml.getUserSchema().getCommunicationID();
else

nme

return "'

private static Xeml toXeml(Geml gemlInstance)
// return in memory
return null;

private static Geml toGeml(Xeml xemlInstance) 1
/l return in memory
return null;

public static void main(String[] args) throws FileNotFoundException,
TransformerException {
// sample arguments
/I -useCurrentFolder -option(fromGemlToXceml) gemlSample.geml
1 gemlSample.geml_diagram out.xeml

if (args.length == 4) {
if ("-option(fromGemlToXeml)".equals(args[0])) {
Transform.fromGemlToXeml(args[1], args[2], args[3]);
} else if ("-option(fromXcmlToGeml)".equals(args[0])) 1
Transform.fromXcmlToGeml(args[1], args[2], args[3]);
}
} else if (args.length == 5 && "-useCurrentFolder".equals(args[0])) {
if ("-option(fromGemlToXcml)".equals(args[1])) 1
Transform.fromGemlToXceml(Transform.class.getResource(args[2])
.getPath(), Transform.class.getResource(args[3])
.getPath(), Transform.class.getResource(args[4])
.getPath();

238

} else if ("-option(fromXcmlToGeml)".equals(args[1])) {
Transform.fromXcmIToGeml(Transform.class.getResource(args[2])
.getPath(), Transform.class.getResource(args[3])
.getPath(), Transform.class.getResource(args[4])

.getPath();
H
} else {
System.err

println("Usage: java Transform <-useCurrentFolder> [-
option(fromGemlToXcml] [gemlPath] [gemlLayoutPath] [xemIPath]");
System.exit(1);

}

239

10.7. Appendix G — Diary of Meetings and Tasks

Meeting 1
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

Assignments:

Meeting 2
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

Assignments:

Meeting 3
Date:
Moderator:
Place:

From:

To:
Duration:
Participants:

Members Late:
Agenda:

Discussion Topics:

Assignments:

8/27/2008
Lazaro
Classroom
9:10 PM
10:00 PM
1 hour

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto

None
Presentation of members
Exchange contact information
Overview of the project
Overview of the entire project
Review websites, old projects

8/30/2008
Leandro
Graduate Lab
1:00 PM

3:00 PM

2 hours

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto

None
Overview of the project
Use cases
Project, Use Cases
Use Cases

9/03/2008
Andrew
Andrew Office
9:00 PM
10:00 PM
1 hour
Andrew, Lazaro, Leandro, Manasa, Marc, Jorge,
Sandeep, Roberto, Andrew, Frank
None
Andrew Presentation
Overview of the project
Project Requirements
Functionality and Limitations
Continue working on previous assignments

240

Meeting 4
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

Assignments:

Meeting 5
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

9/06/2008

Manasa

Graduate Lab

9:00 AM

11:00 AM

2 hours

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto
None

Project Requirements

Review of Use Cases

Review of scenarios

Overview of the project

GCML

XCML

How to store models

How to load and display models

Transformation

Transform models in GCML to schemas in XCML,

storing, saving and loading models

Project requirements, Use Cases, scenarios

Study GCML, study XCML, make sure Eclipse is working in all

group member’s computers, continue working on assignments

from previous week

9/10/2008

Mare

Graduate Lab

3:00 PM

5:00 PM

2 hours

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto
None

SRD

Cost of the Project

Identification of Actors

Uses Cases Revision

Redefining Uses Cases

Use Cases Interaction

Project Organization

Use Cases, SRD,

requirements, Project

functional requirements, non-functional

241

Assignments:

Meeting 6
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:
Assignments:

SRD:

Scheduling, glossary, use interfaces,
System, Definitions
Re assignment of Use Cases, Continue working on assignments

from previous week, Review of SRD requirements

9/13/2008

Jorge

Under Graduate Lab

1:00 PM

4:00 PM

3 hours

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto
None

SRD in general

Assignment for SRD

Installation of COCOMO II

Costing Estimation

SRD, Eclipse and assignments, COCOMUO, cost of the Project

Revision of Use Cases, Continue working on assignments from

previous week, Review of SRD requirements

Introduction: Roberto

Chapter 1: Roberto

Chapter 2: Sandeep

Chapter 3: Leandro

Chapter 4: Lazaro, Manasa, Jorge, Marc
Chapter 5: Roberto

Chapter 6: Sandeep

Chapter 7: 7.1 Leandro -- 7.2 Roberto -- 7.2 Marc

Meeting 7
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:
Assignments:
assignments

9/17/2008

Lazaro

Graduate Lab

2:00 PM

5:00 PM

3 hours

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto
None

SRD

Revision of assignments from previous meeting

Questions and Clarification

Use Cases interaction

Assigned sections from the SRD

Review each section of the SRD and continue working on the SRD

242

project costing estimation,
installing software to calculate cost, Current System, Scope of the

Meeting 8
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

Assignments:

9/24/2008

Leandro

Graduate Lab

3:00 PM

5:00 PM

2 hours

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto
None

SRD — user interfaces

SRD — Dairy of meetings

SRD - Project scheduling

Presentation 1 requirements

Review of COCOMO cost results

Content and format of the Project Schedule, content and format

of the Dairy of Meetings. Presentations of user interfaces

Checklists Revision, status and progress and re-assignments of

activities, scenarios, sequence diagrams

Work on assignments for SRD

243

Meeting 9

Date: 10/1/2008

Moderator: Sandeep

Place: Graduate Lab

From: 1:00 PM

To: 4:00 PM

Duration: 3 hours

Participants: Lazaro , Manasa, Marc, Jorge, Sandeep, Roberto
Members Late: None

Agenda: SRD — Hardware and Software requirements

Presentation 1
Sequence Diagrams
Review for the Exam
Discussion Topics: Static Model, Dynamic Model, SRD Document Revision, status and
progress. Review of the Project for the exam,
Use Cases Revision, status and progress

Assignments: None

Meeting 10

Date: 10/4/2008
Moderator: Leandro

Place: Graduate Lab
From: 08:00 AM

To: 11:00 AM
Duration: 3 hours
Participants: Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto
Members Late: None
Agenda: SRD - Diagrams

Review of Presentation 1

Practice Presentation 1

SRD — Review all the sections that are finished.
Discussion Topics: Content of Presentation 1 and sequence diagrams.

We are not satisfy with 2 of the Use Cases.

We have to re-do 2 of the Use Cases.
Assignments: Finish assignments for SRD

244

Meeting 11
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

Assignments:
the Project

Meeting 12
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

Assignments:

Meeting 13
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

Assignments:

10/5/2008

Lazaro

Graduate Lab

2:00 PM

3:00 PM

1 hour

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto
None

SRD — Review all the Appendixes.

Project Schedule

Dairy of Meetings

User Interface Designs

Schedule and interface designs

Complete and finish the interfaces designs, finish the Gantt chart for

10/6/2008

Roberto

Graduate Lab

4:00 PM

7:00 PM

3 hours

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto
None

Final Review of the SRD —

Practice Presentation 1

Changes to done to the SRD

Complete, revise and finish all the sections of the SRD

10/7/2008

Sandeep

Graduate Lab

12:00 PM

4:00 PM

4 hours

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto
None

Presentation of the SRD by section — before printing final copy

SRD is approved by the all members of the group

Printing final copy according to the specifications

245

Meeting 14

Date: 10/8/2008

Moderator: Lazaro

Place: Classroom

From: 9:10 PM

To: 10:00 PM

Duration: 1 hour

Participants: Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto
Members Late: None

Agenda: Previous Deliverable Flaws Discussed

Roles for the Design Phase Defined
Identified the UseCases that need to be implemented
Discussion Topics: Choosing the most relevant Use Cases to be implemented

Assignments: Sequence Diagram
Meeting 15

Date: 10/18/2008
Moderator: Manasa

Place: Graduate Lab
From: 1:00 PM

To: 3:00 PM

Duration: 2 hours
Participants: Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto
Members Late: None
Agenda: Sequence Diagrams

Object Diagrams
Minimal Class Diagram
Discussion Topics: Project,UML diagrams

Assignments: UML diagrams

Meeting 16

Date: 10/22/2008

Moderator: Andrew

Place: Andrew Office

From: 9:00 PM

To: 10:00 PM

Duration: 1 hour

Participants: Andrew, Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto,
Andrew, Clarke

Members Late: None

Agenda: Andrew Discussion of the USECASES to be Implemented

Decided on the format of the diagrams
Project Requirements
Discussion Topics: Discussion of the Class diagrams and UML stuff

Assignments: Continue working on previous assignments
Meeting 17
Date: 10/25/2008

246

Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

Assignments:

Meeting 18
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:
requirements, Project
project costing estimation, installing

Leandro

Graduate Lab

9:00 AM

11:00 AM

2 hours

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto
None

Project Requirements

Review of Package Diagrams

Review of Minimal and Detailed Class Diagrams

Identified the Design Pattern and the Architectutal Pattern

GCML

XCML

How to store models

How to load and display models

Transformation

Transform models in GCML to schemas in XCML, storing,

saving and loading models

Project requirements, Use Cases, scenarios

Work on the implementation of the design and architectural pattern

9/10/2008

Marc

Graduate Lab

3:00 PM

5:00 PM

2 hours

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto

None

SRD

Cost of the Project

Identification of Actors

Uses Cases Revision

Redefining Uses Cases

Use Cases Interaction

Project Organization

Use Cases, SRD, functional requirements, non-functional
Scheduling, glossary, use interfaces,

software to calculate cost,

Current System, Scope of the System, Definitions

Assignments:
previous

Meeting 19
Date:

Re assignment of Use Cases, Continue working on assignments from
week, Review of SRD requirements

11/1/2008

247

Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:
Assignments:

DD:

Jorge

Under Graduate Lab

1:00 PM

4:00 PM

3 hours

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep, Roberto
None

Design Document Review

Discussed and did the OCL

Focused on the implementation Details of the Project

Stat Chart diagrams, identification of Control objects

Control Objects, Entity Classes (Persistent Data Model), OCL

OCL, State Chart Diagrams and Persistent Data Management

Introduction: Roberto

Chapter 1: Sandeep, Roberto

Chapter 2: Lazaro, Manasa, Leandro

Chapter 3: Jorge, Sandeep,Marc, Leandro

Chapter 4: Roberto

Chapter 5: Roberto,Manasa ,Lazaro, Marc,Leandro

Meeting 20
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:
Discussion Topics:
Assignments:

Meeting 21
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:
Assignments:

11/12/2008

Lazaro

Classroom

9:00 PM

10:00 PM

1 hour

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep
None

Discuss implementation

Existent software, work left to do

Developers need to get the existing to run in Eclipse with the correct

libraries

11/21/2008

Lazaro

Library 2rd Floor

5:00 PM

7:00 PM

2 hour

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep
None

Previous Deliverable Flaws Discussed

Roles for the Final Deliverable Defined

Second deliverable and Final deliverable

Prepare next meeting : test cases

248

Meeting 22
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

Assignments:

Meeting 23
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

Assignments:

Meeting 24
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

Assignments:

Meeting 25
Date:
Moderator:
Place:

11/23/2008

Manasa

Library

2:00 PM

3:00 PM

1 hour

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep
None

Outline of the test cases

Choosing the most relevant test cases for the system

Write the complete test cases

11/25/2008

Jorge

Graduate Lab

6:00 PM

7:30 PM

1.5 hour

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep
None

Outline of the test cases

Choosing the most relevant test cases for the system

Write the complete test cases

11/26/2008

Lazaro

Classroom

2:00 PM

3:00 PM

1 hour

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep
None

Update on the work on test cases

Update on the implementation

Test cases, code

Continue development

11/30/2008
Sandeep
Grad Lab

249

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

Assignments:

Meeting 26
Date:
Moderator:
Place:

From:

To:

Duration:
Participants:
Members Late:
Agenda:

Discussion Topics:

Assignments:

2:00 PM

5:00 PM

3 hour

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep
None

Finalizing the document

Preparing presentation

Document, implementation

Learn the presentation

12/02/2008

Sandeep

Grad Lab

6:00 PM

7:00 PM

1 hour

Lazaro, Leandro, Manasa, Marc, Jorge, Sandeep
None

Rehearsing the presentation

Presentation

Final preparation. Print Final Document.

250

	Abstract
	Table of figures
	1. Introduction
	1.1. Purpose of System
	1.2. Scope of System
	1.3. Development Methodologies
	1.4. Definitions, Acronyms, and Abbreviations
	1.5. Overview of Document

	2. Current System
	3. Project Plan
	3.1. Project Organization
	3.2. Hardware and Software Requirements
	3.3. Work Breakdown
	3.4. Cost Estimate

	4. Requirements of the System
	4.1. Functional and Non-Functional Requirements
	4.1.1. For functionalities corresponding to creating the model
	4.1.2. For functionalities corresponding to loading and storing the model
	4.1.3. For functionalities corresponding to Transforming and validating the model
	4.1.4. For functionalities corresponding to Security of System.

	4.2. Use Case Diagrams
	High level Use case Diagram (packages)
	Model Creation and Editing
	Model Transformation
	Security
	Use cases for Implemented Scenarios
	4.2.1. Use Case Descriptions

	4.3. Requirement Analysis.

	5. Software Architecture
	5.1. Overview
	Modeling Environment: Model-View-Controller
	Model Transformation and Validation: Pipe and Filter
	Repository
	Package Diagram

	5.2. Subsystem Decomposition
	5.3. Hardware and Software Mapping
	5.4. Persistent Data Management
	Persistent Data for Gcml
	Form:
	Person:
	Action:
	Capability Type:
	Device:
	User

	6. Object Design
	6.1. Overview
	Minimal Class Diagrams
	CmeController
	UCI and Repository
	Comments
	Briefly describe the purpose of having certain classes in certain subsystems
	Gcml
	Xcml

	6.2. State Machine
	Model Creation Statechart
	Model Transformation Statechart
	Repository Statechart
	Administration and Security Statechart

	6.3. Object Interaction (Sequence Diagrams)
	6.3.1. Open Exiting GCML Model
	6.3.2. Create File Transfer Model
	6.3.3. Convert Model from GCML to XCML
	6.3.4. Convert Model from XCML to GCML
	6.3.5. Import Model from XCML
	6.3.6. Add Model to Repository
	6.3.7. Edit Model Metadata
	6.3.8. Validate Model

	6.4. Detailed Class Design
	Design Patterns Used
	Singleton Pattern
	Factory Method Pattern
	Adapter Pattern
	Observer Pattern and Command Pattern

	Class Descriptions
	CmeController (see Appendix C)
	Repository (see Appendix C)
	UCI Engine (see Appendix C)

	CML Model

	7. Testing Process
	7.1. System Tests.

	Sunny Day Scenario 2 : The userL1, valid user logs into the system
	Test Case for Opening an Existing GCML Model
	Test case for Edit Model Meta Data
	Rainy Day: The user tries to edit the model metadata which is protected
	Test cases to convert from XCML to GCML
	Test cases to add model to repository.
	7.2. Sub-System Tests.
	7.3. Unit Tests.
	7.4. Evaluation of Tests

	8. Glossary
	9. Signatures
	10. Appendix
	10.1. Appendix A – Project Schedule
	10.2. Appendix B – Use Cases
	10.2.1.1. Drag Object to Canvas
	10.2.1.2. Create Edge between Objects
	10.2.1.3. Create New Empty Model
	10.2.1.4. Create Generic Model
	10.2.1.5. Open Existing GCML Model
	10.2.1.6. Create Group Chat Model
	10.2.1.7. Create 2-Way Voice Connection Model
	10.2.1.8. Create File Transfer Model
	10.2.1.9. Convert Model from GCML to XCML
	10.2.1.10. Convert Model from XCML to GCML
	10.2.1.11. Add Model to Repository
	10.2.1.12. Import Model from XCML
	10.2.1.13. Import Model from GCML
	10.2.1.14. Transform Object Data
	10.2.1.15. Generate Layout Data
	10.2.1.16. Calculate Shape and Size
	10.2.1.17. Calculate Coordinates
	10.2.1.18. Check Overlap
	10.2.1.19. Validate Model
	10.2.1.20. Check Model Schema
	10.2.1.21. Check Semantic Rules
	10.2.1.22. Print Model
	10.2.1.23. Edit Model Metadata
	10.2.1.24. Login
	10.2.1.25. Logout
	10.2.1.26. Create Mirror Backup of Repository
	10.2.1.27. Encrypt Sensitive Data
	10.2.1.28. Create Authorized User Account
	10.2.1.29. Change User Account Password
	10.2.1.30. Delete User Account
	10.2.1.31. Suspend User Account after n attempts
	10.2.1.32. Lock Running Application
	10.2.1.33. Unlock Application
	10.2.2. Misuse Case Descriptions
	10.2.2.1. Unauthorized Access
	10.2.2.2. Unauthorized Use of Running Application
	10.2.2.3. Delete Data in Repository
	10.2.2.4. Read Sensitive Data in Repository
	10.2.2.5. Access System with Stolen Credentials
	10.2.2.6. Access System with Expired Credentials
	10.2.2.7. Access System after Many Login Attempts

	10.3. Appendix C – User Interface Design
	Login popup window
	Administrative Window for editing Users
	Administrative Window for editing Models Metadata
	Model for with simple lines and shapes
	Model for CML Model for a 2-way Voice connection
	Create new model
	Enter name for new model
	Enter name for new model 2
	New model created

	10.4. Appendix D – Detailed Class Diagrams
	CmeController
	Gcml
	UCI
	Repository
	Xcml

	10.5. Appendix E – Class Interfaces
	Modeling Environment (gcml.diagram and gcml.edit)
	Gcml Object Model
	Xcml object Model
	Repository
	Administration and Security

	10.6. Appendix F – Documented Code for Test Drivers
	10.7. Appendix G – Diary of Meetings and Tasks
	Meeting 1
	Meeting 2
	Meeting 3
	Meeting 4
	Meeting 5
	Meeting 6
	Meeting 7
	Meeting 8
	Meeting 9
	Meeting 10
	Meeting 11
	Meeting 12
	Meeting 13
	Meeting 14
	Meeting 15
	Meeting 16
	Meeting 17
	Meeting 18
	Meeting 19
	Meeting 20
	Meeting 21
	Meeting 22
	Meeting 23
	Meeting 24
	Meeting 25
	Meeting 26

